with the collaboration of Iranian Society of Mechanical Engineers (ISME)

Document Type : Research Article

Authors

1 Tarbiat Modares University

2 Shahid Chamran University of Ahvaz

Abstract

Electronic canopy characterization to determine structural properties is an important issue in tree crop management. Ultrasonic and optical sensors are the most used sensors for this purpose. The objective of this work was to assess the performance of an ultrasonic sensor under laboratory and field conditions in order to provide reliable estimations of distance measurements to apple tree canopies. To achieve this purpose, a methodology has been designed to analyze sensor performance in relation to foliage distance and to the effects of interference with adjacent sensors when working simultaneously. Results showed that the average error in distance measurement using the ultrasonic sensor in laboratory conditions was 0.64 cm. However, the increase of variability in field conditions reduced the accuracy of this kind of sensors when estimating distances to canopies. The average error in such situations was 3.19 cm. When analyzing interferences of adjacent sensors 30 cm apart, the average error was ±14.65 cm. When adjacent sensors were placed apart by 60 cm, the average error became 6.73 cm. The ultrasonic sensor tested has been proven to be suitable to estimate distances to the canopy in pistachio garden conditions when sensors are 60 cm apart or more and can, therefore, be used in a system to estimate structural canopy parameters in precision horticulture.

Keywords

1. Arno, J., A. Escolà, J. M. Vallès, R. Sanz, J. Masip, J. Palacin, and J. R. Rosell. 2009. Use of a ground-based LIDAR scanner to measure leaf area and canopy structure variability of grapevines. In Precision Agriculture ’09; 7th European Conference on Precision Agriculture, ECPA 2009, Wageningen, Netherlands. pp. 177-184.
2. Balsari, P. T., and M. Tamagnone. 1997. An automatic spray control for airblast sprayers: First results. In Preciscion Agriculture ’97; Proceedings of the 1st European Conference on Precision Aagriculture. BIOS Scientific Publishers Ltd: Oxford, UK, 1997; pp. 619-626.
3. Brown, D., D. Giles, M. Oliver, and P.Klassen. 2008. Targeted spray technology to reduce pesticide in runoff from dormant orchards. Crop Protection 27: 545-552.
4. Byers, R., K.Hickey, and C. Hill. 1971. Base gallonage per acre. Virginia Fruit 60: 19-23.
5. Escolà, A., F. Camp, F. Solanelles, J. Llorens, S. Planas, J. R. Rosell, F.Gràcia, and E.Gil. 2007. Variable dose rate sprayer prototype for tree crops based on sensor measured canopy characteristics. In Precision Agriculture ’07; Proceedings of 6th European Conference on Precision Agriculture, Skiathos, Grècia, Stafford, J.V., Ed. Wageningen Academic Publishers: Wageningen, The Netherlands, June 2007, pp. 563-571.
6. Escolà, A., F. Solanelles, S. Planas, and J. R. Rosell. 2002. Electronic control system for proportional spray application to the canopy volume in tree crops. proceedings of EurAgEng Conference. Budapest, Hungary.
7. Gil, E., J. Rosell, S. Planas, and L. Val. 2007. Variable rate application of plant protection products in vineyard using ultrasonic sensors. Crop Protection 26: 1287-1297.
8. Giles, D. K., M . J. Delwiche, and R. B. Dodd. 1987. Control of orchard spraying based on electronic sensing of target characteristics. Transactions of the ASABE 30: 1624-1636.
9. Giles, D. K., M. J. Delwiche, and R. B.Dodd. 1988. Electronic measurement of tree canopy volume. Transactions of the ASAE 31: 264-272.
10. Giles, D. K., M. J. Delwiche, and R. B. Dodd. 1989a. Sprayer control by sensing orchard crop characteristics: orchard architecture and spray liquid savings. Journal of Agricultural Engineering Research 43: 271-289.
11. Giles, D. K., M. J. Delwiche, and R. B. Dodd. 1989b. Method and apparatus for target plant foliage sensing and mapping and related materials application control. US 4823268 A Patent
12. Jeon, H. Y., H. Zhu, R. Derksen, E. Ozkan, and C. Krause. 2011. Evaluation of ultrasonic sensor for variable-rate spray applications. Computers and Electronics in Agriculture 75: 213-221.
13. Llorens, J., E. Gil, and J. Llop. 2010. Variable rate dosing in precision viticulture: Use of electronic devices to improve application efficiency. Crop Protection 29: 239-248.
14. Maghsoudi, H. 2013. Variable rate orchard sprayer with mechatronic target detectin system using ultrasonic sensors. Ph.D Dissertation, Tarbiat Modares University. (In Farsi).
15. Maghsoudi, H., and S. Minaei. 2013. Variable rate spraying a methodology for sustainable development. The 1st National Conference on Solutions to Access Sustainable Development in Agriculture, Natural Resources and the Environment,Tehran, Iran. (In Farsi).
16. Maghsoudi, H., and S. Minaei. 2014. A review of applicable methodologies for variable-rate spraying of orchards based on canopy characteristics. Journal of Crop Protection 3 (4): 531-542.
17. Mann, K., A. Schumann, and T. Obreza. 2011. Delineating productivity zones in a citrus grove using citrus production, tree growth and temporally stable soil data. Precision Agriculture 12: 457-472.
18. Masoudi, H., R. Alimardani, M. Omid, S. Mohtasebi, and S. Bagheri Shooraki. 2011. Design, fabrication and evaluation of a mobile robot for spraying in greenhouses. Journal of Agricultural Engineering Research 12: 87-100.
19. Masoudi, H., R. Alimardani, M. Omid, S. Mohtasebi, and N. Noguchi. 2012. Determination of ultrasonic sensor ability for use as guidance sensors of mobile robots. Sensors and Materials 24: 115-126.
20. Mcconnell, R., K. Elliot, S. Blizzard, and K. Koster. 1983. Electronic measurement of tree-row-volume. National Conference on Agricultural Electronics Applications, Hyatt Regency Illinois Center, Chicago, Illinois. USA.
21. Molto, E., B. Martı́N, and A. Gutierrez. 2000. PM-Power and Machinery: Design and testing of an automatic machine for spraying at a constant distance from the tree canopy. Journal of Agricultural Engineering Research 77: 379-384.
22. Molto, E., B. Martı́N, and A. Gutierrez. 2001. PM-Power and Machinery: Pesticide loss reduction by automatic adaptation of spraying on globular trees. Journal of Agricultural Engineering Research 78: 35-41.
23. Morgan, N. G. 1964. Gallons per acre of sprayed area an alternative standard term for the spraying of plantation crops. World Crops 16: 64-65.
24. Palleja, T., M.Tresanchez, M. Teixido, R. Sanz, J. Rosell, and J. Palacin. 2010. Sensitivity of tree volume measurement to trajectory errors from a terrestrial LIDAR scanner. Agricultural and Forest Meteorology 150: 1420-1427.
25. Planas, S., J. R. Rosell, J. Pomar, F. Camp, F. Solanelles, F. Gràcia, J. Llorens, and E. Gil. 2011. Performance of an ultrasonic ranging sensor in apple tree canopies. Sensors 11: 2459-2477.
26. Roper, B. E.1988. Grove Sprayer. US 4768713 A Patent.
27. Rosell, J. R., J. Llorens, R. Sanz, J. Arno, M. Ribes-Dasi, J. Masip, F. Camp, F. Solanelles, F. Gràcia, and E. Gil. 2009a. Obtaining the three-dimensional structure of tree orchards from remote 2D terrestrial LIDAR scanning. Agricultural and Forest Meteorology 149: 1505-1515.
28. Rosell, J. R., R. Sanz, J. Llorens, J. Arno, M. Ribes-Dasi, J. Masip, F. Camp, F. Gràcia, F. Solanelles, and T. Pallejà. 2009b. A tractor-mounted scanning LIDAR for the non-destructive measurement of vegetative volume and surface area of tree-row plantations: A comparison with conventional destructive measurements. Biosystems Engineering 102: 128-134.
29. Schumann, A. W., and Q. U. Zaman. 2005. Software development for real-time ultrasonic mapping of tree canopy size. Computers and Electronics in Agriculture 47: 25-40.
30. Schumann, A. W., W. M. Miller, Q. U. Zaman, K. H. Hostler, S. Buchanon, and S. Cugati. 2006. Variable rate granular fertilization of citrus groves: Spreader performance with single-tree prescription zones. Applied Engineering in Agriculture 22: 19-24.
31. Solanelles, F., S. Planas, A. Escola, and J. Rosell. 2002. Spray application efficiency of an electronic control system for proportional application to the canopy volume. Aspects of Applied Biology 66: 139-146.
32. Solanelles, F., S. Planas, J. Rosell, F. Camp, and F. Gràci. 2006. An electronic control system for pesticide application proportional to the canopy width of tree crops. Biosystems Engineering 95: 473-481.
33. Tumbo, S., M. Salyani, J. Whitney, T. Wheaton, and W. Miller. 2002. Investigation of laser and ultrasonic ranging sensors for measurements of citrus canopy volume. Applied Engineering in Agriculture 18: 367-372.
34. Zaman, Q. U., and A. W. Schumann. 2005. Performance of an ultrasonic tree volume measurement system in commercial citrus groves. Precision Agriculture 6: 467-480.
35. Zaman, Q. U., A. W. Schumann, and W. M. Miller. 2005. Variable rate nitrogen application in Florida citrus based on ultrasonically-sensed tree size. Applied Engineering in Agriculture 21: 331-335.
36. Zaman, Q. U., A. W. Schumann, and H. K. Hostler. 2006. Estimation of citrus fruit yield using ultrasonically-sensed tree size. Applied Engineering in Agriculture 22: 39-44.
37. Zaman, Q. U., and A. W. Schumann. 2006. Nutrient management zones for citrus based on variation in soil properties and tree performance. Precision Agriculture 7: 45-63.
38. Zaman, Q. U., A. W. Schumann, and H. K. Hostler.2007. Quantifying sources of error in Ultrasonic measurements of citrus orchards. Applied Engineering in Agriculture 23: 449-453.
39. Zamahn, Q., and M. Salyani. 2004. Effects of foliage density and ground speed on ultrasonic measurement of citrus tree volume. Applied Engineering in Agriculture 20: 173-178.
CAPTCHA Image