نوع مقاله : مقاله مروری لاتین
نویسندگان
1 گروه مهندسی، دانشکده مهندسی کامپیوتر، موسسه آموزش عالی گلستان، گرگان، ایران
2 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران
چکیده
امروزه تقریباً نیمی از کل نیازهای غذایی انسان بهویژه در آسیا مستقیماً از غلات تأمین میشود و نزدیک به 70 درصد از سطح زیرکشت جهان که یک میلیارد هکتار است را غلات اشغال میکنند. بنابراین یافتن روشهای غیرمخرب برای افزایش کیفیت بذر در کشاورزی و صنعت باید توسعه یابد. پلاسمای سرد روشی جدید و کارآمد در بخش کشاورزی و غذایی است که میتوان از آن برای غیرفعال کردن میکروارگانیسمهای سطحی و تحریک بذر استفاده کرد. این بررسی خلاصهای از اثربخشی درمان با پلاسمای سرد بر ویژگیهای چهار گیاه مهم غلات: گندم، برنج، ذرت و جو را ارائه میکند. تمرکز بر روی اثرات این تیمار بر روی جوانهزنی بذر، تغییرات خواص سطحی و جذب آب بذر، پارامترهای رشد ریشه، طول ساقه و نهال، پارامترهای زیستتوده و فعالیتهای متابولیکی است. با بررسی تحقیقات انجامشده توسط محققان مشاهده میشود که بذر غلات تیمارشده با پلاسمای سرد دارای قدرت جوانهزنی، جذب آب، طول ساقه و اندام هوایی، راندمان رشد، وزن اندام هوایی و ریشه و فعالیت متابولیکی بهتری بودند. این بررسی میتواند روندهای بالقوه امیدوارکنندهای را در استفاده از پلاسما بهعنوان روشی برای کاهش شیوع بیماریهای مضر گیاهی که از طریق بذر منتقل میشود و خواب دانههای سخت را کاهش دهد، ارائه دهد.
کلیدواژهها
موضوعات
©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).
- Adhikari, B., Adhikari, M., Ghimire, B., Adhikari, B. C., Park, G., & Choi, E. H. (2020). Cold plasma seed priming modulates growth, redox homeostasis and stress response by inducing reactive species in tomato (Solanum lycopersicum). Free Radical Biology and Medicine, 156, 57-69. https://doi.org/10.1016/j.freeradbiomed.2020.06.003
- Ahn, C., Gill, J., & Ruzic, D. N. (2019). Growth of plasma-treated corn seeds under realistic conditions. Scientific reports, 9(1), 4355. https://doi.org/10.1038/s41598-019-40700-9
- Ali, Q., Daud, M., Haider, M. Z., Ali, S., Rizwan, M., Aslam, N., Noman, A., Iqbal, N., Shahzad, F., & Deeba, F. (2017). Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum) by enhancing physiological and biochemical parameters. Plant Physiology and Biochemistry, 119, 50-58. https://doi.org/10.1016/j.plaphy.2017.08.010
- Amnuaysin, N., Korakotchakorn, H., Chittapun, S., & Poolyarat, N. (2018). Seed germination and seedling growth of rice in response to atmospheric air dielectric-barrier discharge plasma. Songklanakarin Journal of Science & Technology, 40(4).
- Bormashenko, E., Grynyov, R., Bormashenko, Y., & Drori, E. (2012). Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Scientific Reports, 2(1), 741. https://doi.org/10.1038/srep00741
- Butscher, D., Schlup, T., Roth, C., Müller-Fischer, N., Gantenbein-Demarchi, C., & von Rohr, P. R. (2015). Inactivation of microorganisms on granular materials: Reduction of Bacillus amyloliquefaciens endospores on wheat grains in a low pressure plasma circulating fluidized bed reactor. Journal of Food Engineering, 159, 48-56. https://doi.org/10.1016/j.jfoodeng.2015.03.009
- Butscher, D., Zimmermann, D., Schuppler, M., & von Rohr, P. R. (2016). Plasma inactivation of bacterial endospores on wheat grains and polymeric model substrates in a dielectric barrier discharge. Food Control, 60, 636-645. https://doi.org/10.1016/j.foodcont.2015.09.003
- Chalise, R., Bhandari, P., Sharma, S., Basnet, S., Subedi, D. P., & Khanal, R. (2023). Enhancement of wheat yield by atmospheric pressure plasma treatment. AIP Advances, 13(6). https://doi.org/10.1063/5.0156552
- Chen, H. H., Chang, H. C., Chen, Y. K., Hung, C. L., Lin, S. Y., & Chen, Y. S. (2016). An improved process for high nutrition of germinated brown rice production: Low-pressure plasma. Food Chemistry, 191, 120-127. https://doi.org/10.1016/j.foodchem.2015.01.083
- Chen, H. H., Chen, Y. K., & Chang, H. C. (2012). Evaluation of physicochemical properties of plasma treated brown rice. Food Chemistry, 135(1), 74-79. https://doi.org/10.1016/j.foodchem.2012.04.092
- Chen, H. H., Hung, C. L., Lin, S. Y., & Liou, G. J. (2015). Effect of low-pressure plasma exposure on the storage characteristics of brown rice. Food and Bioprocess Technology, 8, 471-477. https://doi.org/10.1007/s11947-014-1415-6
- Coutinho, N. M., Silveira, M. R., Rocha, R. S., Moraes, J., Ferreira, M. V. S., Pimentel, T. C., Freitas, M. Q., Silva, M. C., Raices, R. S., & Ranadheera, C. S. (2018). Cold plasma processing of milk and dairy products. Trends in Food Science & Technology, 74, 56-68. https://doi.org/10.1016/j.tifs.2018.02.008
- Dobrin, D., Magureanu, M., Mandache, N. B., & Ionita, M. D. (2015). The effect of non-thermal plasma treatment on wheat germination and early growth. Innovative Food Science & Emerging Technologies, 29, 255-260. https://doi.org/10.1016/j.ifset.2015.02.006
- Fang, Z., Wang, X., Shao, R., Qiu, Y., & Edmund, K. (2011). The effect of discharge power density on polyethylene terephthalate film surface modification by dielectric barrier discharge in atmospheric air. Journal of Electrostatics, 69(1), 60-66. https://doi.org/10.1016/j.elstat.2010.11.003
- Feizollahi, E., Iqdiam, B., Vasanthan, T., Thilakarathna, M. S., & Roopesh, M. (2020). Effects of atmospheric-pressure cold plasma treatment on deoxynivalenol degradation, quality parameters, and germination of barley grains. Applied Sciences, 10(10), 3530. https://doi.org/10.3390/app10103530
- Fereydooni, M., & Alizadeh, H. H. A. (2022). Microscopic investigation of cold plasma effect on chickpea seed germination. Journal of Agricultural Machinery, 12(2), 231-240. (in Persian with English abstract). https://doi.org/10.22067/jam.v12i2.88718
- Filatova, I., Azharonok, V., Goncharik, S., Lushkevich, V., Zhukovsky, A., & Gadzhieva, G. (2014). Effect of RF plasma treatment on the germination and phytosanitary state of seeds. Journal of Applied Spectroscopy, 81, 250-256. https://doi.org/10.1007/s10812-014-9918-5
- Ghaly, T., & Sutherland, J. (1984). Heat damage to grain and seeds. Journal of Agricultural Engineering Research, 30, 337-345. https://doi.org/10.1016/S0021-8634(84)80034-7
- Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. Science, 327(5967), 812-818. https://doi.org/10.1126/science.1185383
- Gómez-Ramírez, A., López-Santos, C., Cantos, M., García, J. L., Molina, R., Cotrino, J., Espinós, J., & González-Elipe, A. R. (2017). Surface chemistry and germination improvement of Quinoa seeds subjected to plasma activation. Scientific Reports, 7(1), 5924. https://doi.org/10.1038/s41598-017-06164-5
- Gujral, H. S., Sharma, P., Kumar, A., & Singh, B. (2012). Total phenolic content and antioxidant activity of extruded brown rice. International Journal of Food Properties, 15(2), 301-311. https://doi.org/10.1080/10942912.2010.483617
- Guo, J., He, Z., Ma, C., Li, W., Wang, J., Lin, F., Liu, X., & Li, L. (2023). Evaluation of cold plasma for decontamination of molds and mycotoxins in rice grain. Food Chemistry, 402, 134159. https://doi.org/10.1016/j.foodchem.2022.134159
- Guo, Q., Meng, Y., Qu, G., Wang, T., Yang, F., Liang, D., & Hu, S. (2018). Improvement of wheat seed vitality by dielectric barrier discharge plasma treatment. Bioelectromagnetics, 39(2), 120-131. https://doi.org/10.1002/bem.22088
- Guo, Q., Wang, Y., Zhang, H., Qu, G., Wang, T., Sun, Q., & Liang, D. (2017). Alleviation of adverse effects of drought stress on wheat seed germination using atmospheric dielectric barrier discharge plasma treatment. Scientific Reports, 7(1), 16680. https://doi.org/10.1038/s41598-017-16944-8
- Hasan, M., Sohan, M. S. R., Sajib, S. A., Hossain, M. F., Miah, M., Maruf, M. M. H., Khalid-Bin-Ferdaus, K. M., Kabir, A. H., Talukder, M. R., & Rashid, M. M. (2022). The effect of low-pressure dielectric barrier discharge (lpdbd) plasma in boosting germination, growth, and nutritional properties in wheat. Plasma Chemistry and Plasma Processing, 42(2), 339-362. https://doi.org/10.1007/s11090-021-10217-z
- Henselová, M., Slováková, Ľ., Martinka, M., & Zahoranová, A. (2012). Growth, anatomy and enzyme activity changes in maize roots induced by treatment of seeds with low-temperature plasma. Biologia, 67, 490-497. https://doi.org/10.2478/s11756-012-0046-5
- Hui, Y., Wang, D., You, Y., Shao, C., Zhong, C., & Wang, H. (2020). Effect of low temperature plasma treatment on biological characteristics and yield components of wheat seeds (Triticum aestivum). Plasma Chemistry and Plasma Processing, 40, 1555-1570. https://doi.org/10.1007/s11090-020-10104-z
- Jiang, J., He, X., Li, L., Li, J., Shao, H., Xu, Q., Ye, R., & Dong, Y. (2014). Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Science and Technology, 16(1), 54. https://doi.org/10.1088/1009-0630/16/1/12
- Kabir, A. H., Rahman, M. M., Das, U., Sarkar, U., Roy, N. C., Reza, M. A., Talukder, M. R., & Uddin, M. A. (2019). Reduction of cadmium toxicity in wheat through plasma technology. PLoS One, 14(4), e0214509. https://doi.org/10.1371/journal.pone.0214509
- Keener, K., & Misra, N. (2016). Future of cold plasma in food processing. In Cold plasma in food and agriculture (pp. 343-360). Elsevier. https://doi.org/10.1016/B978-0-12-801365-6.00014-7
- Kikuchi, K., Koizumi, M., Ishida, N., & Kano, H. (2006). Water uptake by dry beans observed by micro-magnetic resonance imaging. Annals of Botany, 98(3), 545-553. https://doi.org/10.1093/aob/mcl145
- Kusano, Y., Salewski, M., Leipold, F., Zhu, J., Ehn, A., Li, Z., & Aldén, M. (2014). Stability of alternating current gliding arcs. The European Physical Journal D, 68, 1-9. https://doi.org/10.1140/epjd/e2014-50343-8
- Lee, K. H., Kim, H. J., Woo, K. S., Jo, C., Kim, J. K., Kim, S. H., Park, H. Y., Oh, S. K., & Kim, W. H. (2016). Evaluation of cold plasma treatments for improved microbial and physicochemical qualities of brown rice. LWT, 73, 442-447. https://doi.org/10.1016/j.lwt.2016.06.055
- Lee, K. H., Woo, K. S., Yong, H. I., Jo, C., Lee, S. K., Lee, B. W., Oh, S. K., Lee, Y. Y., Lee, B., & Kim, H. J. (2018). Assessment of microbial safety and quality changes of brown and white cooked rice treated with atmospheric pressure plasma. Food Science and Biotechnology, 27, 661-667. https://doi.org/10.1007/s10068-017-0297-6
- Li, Y., Wang, T., Meng, Y., Qu, G., Sun, Q., Liang, D., & Hu, S. (2017). Air atmospheric dielectric barrier discharge plasma induced germination and growth enhancement of wheat seed. Plasma Chemistry and Plasma Processing, 37, 1621-1634. https://doi.org/10.1007/s11090-017-9835-5
- Liao, X., Cullen, P., Muhammad, A. I., Jiang, Z., Ye, X., Liu, D., & Ding, T. (2020). Cold plasma–based hurdle interventions: New strategies for improving food safety. Food Engineering Reviews, 12, 321-332. https://doi.org/10.1007/s12393-020-09222-3
- Liu, J., Wang, R., Chen, Z., & Li, X. (2021). Effect of cold plasma treatment on cooking, thermomechanical and surface structural properties of Chinese milled rice. Food and Bioprocess Technology, 14(5), 866-886. https://doi.org/10.1007/s11947-021-02614-1
- Liu, Q., Wu, H., Luo, J., Liu, J., Zhao, S., Hu, Q., & Ding, C. (2021). Effect of dielectric barrier discharge cold plasma treatments on flavor fingerprints of brown rice. Food Chemistry, 352, 129402. https://doi.org/10.1016/j.foodchem.2021.129402
- Los, A., Ziuzina, D., Akkermans, S., Boehm, D., Cullen, P. J., Van Impe, J., & Bourke, P. (2018). Improving microbiological safety and quality characteristics of wheat and barley by high voltage atmospheric cold plasma closed processing. Food Research International, 106, 509-521. https://doi.org/10.1016/j.foodres.2018.01.009
- Los, A., Ziuzina, D., Boehm, D., Cullen, P. J., & Bourke, P. (2019). Investigation of mechanisms involved in germination enhancement of wheat (Triticum aestivum) by cold plasma: Effects on seed surface chemistry and characteristics. Plasma Processes and Polymers, 16(4), 1800148. https://doi.org/10.1002/ppap.201800148
- Lutts, S., Benincasa, P., Wojtyla, L., Kubala, S., Pace, R., Lechowska, K., Quinet, M., & Garnczarska, M. (2016). Seed priming: new comprehensive approaches for an old empirical technique. New Challenges in Seed Biology-basic and Translational Research Driving Seed Technology, 46.
- Maghsoudi, H., Balvardi, M., Ganjovi, A., & Amir-Mojahedi, M. S. (2023). Investigating the Effect of Cold Plasma on some Chemical Properties of Date Fruits (Phoenix dactylifera). Biomechanism and Bioenergy Research, 2(1), 56-67. https://doi.org/10.22103/BBR.2023.20459.1044
- Mazandarani, A., Goudarzi, S., Ghafoorifard, H., & Eskandari, A. (2020). Evaluation of DBD plasma effects on barley seed germination and seedling growth. IEEE Transactions on Plasma Science, 48(9), 3115-3121. https://doi.org/1109/TPS.2020.3012909
- McDonald, M. B. (1994). Seed germination and seedling establishment. Physiology and Determination of Crop Yield, 37-60. https://doi.org/10.2134/1994.physiologyanddetermination.c3
- Mendis, D., Rosenberg, M., & Azam, F. (2000). A note on the possible electrostatic disruption of bacteria. IEEE Transactions on Plasma Science, 28(4), 1304-1306. https://doi.org/1109/27.893321
- Meng, Y., Qu, G., Wang, T., Sun, Q., Liang, D., & Hu, S. (2017). Enhancement of germination and seedling growth of wheat seed using dielectric barrier discharge plasma with various gas sources. Plasma Chemistry and Plasma Processing, 37, 1105-1119. https://doi.org/10.1007/s11090-017-9799-5
- Nalwa, C., Thakur, A. K., Vikram, A., Rane, R., & Vaid, A. (2017). Studies on plasma treatment and priming of seeds of bell pepper (Capsicum annuum). Journal of Applied and Natural Science, 9(3), 1505-1509. https://doi.org/10.31018/jans.v9i3.1392
- Niemira, B. A. (2012). Cold plasma decontamination of foods. Annual Review of Food Science and Technology, 3, 125-142. https://doi.org/10.1146/annurev-food-022811-101132
- Nonogaki, H. (2014). Seed dormancy and germination—emerging mechanisms and new hypotheses. Frontiers in Plant Science, 5, 233. https://doi.org/10.3389/fpls.2014.00233
- Park, H., Puligundla, P., & Mok, C. (2020). Cold plasma decontamination of brown rice grains: Impact on biochemical and sensory qualities of their corresponding seedlings and aqueous tea infusions. LWT, 131, 109508. https://doi.org/10.1016/j.lwt.2020.109508
- Park, Y., Oh, K. S., Oh, J., Seok, D. C., Kim, S. B., Yoo, S. J., & Lee, M. J. (2018). The biological effects of surface dielectric barrier discharge on seed germination and plant growth with barley. Plasma Processes and Polymers, 15(2), 1600056. https://doi.org/10.1002/ppap.201600056
- Penado, K. N. M., Mahinay, C. L. S., & Culaba, I. B. (2017). Effect of atmospheric plasma treatment on seed germination of rice (Oryza sativa). Japanese Journal of Applied Physics, 57(1S), 01AG08. https://doi.org/10.7567/JJAP.57.01AG08
- Pérez-Pizá, M. C., Cejas, E., Zilli, C., Prevosto, L., Mancinelli, B., Santa-Cruz, D., Yannarelli, G., & Balestrasse, K. (2020). Enhancement of soybean nodulation by seed treatment with non–thermal plasmas. Scientific Reports, 10(1), 4917. https://doi.org/10.1038/s41598-020-61913-3
- Radjabian, T., Saboora, A., Hhasani, B., & Fallah-Hosseini, H. (2007). Effects of GA3 and chilling on seed germination of Ferula assa-foetida, as a medicinal plant. Researches on Medicinal and Aromatic Plants of Iran, 23(3).
- Ranieri, P., Sponsel, N., Kizer, J., Rojas‐Pierce, M., Hernández, R., Gatiboni, L., Grunden, A., & Stapelmann, K. (2021). Plasma agriculture: Review from the perspective of the plant and its ecosystem. Plasma Processes and Polymers, 18(1), 2000162. https://doi.org/10.1002/ppap.202000162
- Rasooli, Z., Barzin, G., Mahabadi, T. D., & Entezari, M. (2021). Stimulating effects of cold plasma seed priming on germination and seedling growth of cumin plant. South African Journal of Botany, 142, 106-113. https://doi.org/10.1016/j.sajb.2021.06.025
- Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PloS one, 8(6), e66428. https://doi.org/10.1371/journal.pone.0066428
- Roy, N., Hasan, M., Talukder, M., Hossain, M., & Chowdhury, A. (2018). Prospective applications of low frequency glow discharge plasmas on enhanced germination, growth and yield of wheat. Plasma Chemistry and Plasma Processing, 38, 13-28. https://doi.org/10.1007/s11090-017-9855-1
- Saberi, M., Sanavy, M., Zare, R., & Ghomi, H. (2019). Improvement of photosynthesis and photosynthetic productivity of winter wheat by cold plasma treatment under haze condition. Journal of Agricultural Science and Technology, 21(7), 1889-1904. https://doi.org/20.1001.1.16807073.2019.21.7.8.9
- Sabularse, V., Liuzzo, J., Rao, R., & Grodner, R. (1991). Cooking quality of brown rice as influenced by gamma irradiation, variety and storage. Journal of Food Science, 56(1), 96-98. https://doi.org/10.1111/j.1365-2621.1991.tb07984.x
- Sajib, S. A., Billah, M., Mahmud, S., Miah, M., Hossain, F., Omar, F. B., Roy, N. C., Hoque, K. M. F., Talukder, M. R., & Kabir, A. H. (2020). Plasma activated water: The next generation eco-friendly stimulant for enhancing plant seed germination, vigor and increased enzyme activity, a study on black gram (Vigna mungo). Plasma Chemistry and Plasma Processing, 40, 119-143. https://doi.org/10.1007/s11090-019-10028-3
- Sarangapani, C., Devi, Y., Thirundas, R., Annapure, U. S., & Deshmukh, R. R. (2015). Effect of low-pressure plasma on physico-chemical properties of parboiled rice. LWT-Food Science and Technology, 63(1), 452-460. https://doi.org/10.1016/j.lwt.2015.03.026
- Sarangapani, C., Keogh, D. R., Dunne, J., Bourke, P., & Cullen, P. (2017). Characterisation of cold plasma treated beef and dairy lipids using spectroscopic and chromatographic methods. Food Chemistry, 235, 324-333. https://doi.org/10.1016/j.foodchem.2017.05.016
- Selcuk, M., Oksuz, L., & Basaran, P. (2008). Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment. Bioresource Technology, 99(11), 5104-5109. https://doi.org/10.1016/j.biortech.2007.09.076
- Sera, B., Spatenka, P., S̆erý, M., Vrchotova, N., & Hruskova, I. (2010). Influence of plasma treatment on wheat and oat germination and early growth. IEEE Transactions on Plasma Science, 38(10), 2963-2968. https://doi.org/10.1109/TPS.2010.2060728
- Shi, H., Ileleji, K., Stroshine, R. L., Keener, K., & Jensen, J. L. (2017). Reduction of aflatoxin in corn by high voltage atmospheric cold plasma. Food and Bioprocess Technology, 10, 1042-1052. https://doi.org/10.1007/s11947-017-1873-8
- Sidik, M. A. B., Buntat, Z., Nawawi, Z., Jambak, M. I., Buntat, Y., & Musa, F. N. (2018). Effects of cold plasma treatment on the growth rate of corn and eggplant plants. 2018 International Conference on Electrical Engineering and Computer Science (ICECOS), 441-446. https://doi.org/10.1109/ICECOS.2018.8605250
- Sivachandiran, L., & Khacef, A. (2017). Enhanced seed germination and plant growth by atmospheric pressure cold air plasma: combined effect of seed and water treatment. RSC advances, 7(4), 1822-1832. https://doi.org/10.1039/C6RA24762H
- Sookwong, P., Yodpitak, S., Doungkaew, J., Jurithayo, J., Boonyawan, D., & Mahatheeranont, S. (2014). Application of oxygen-argon plasma as a potential approach of improving the nutrition value of pre-germinated brown rice. Journal of Food and Nutrition Research, 2(12), 946-951. https://doi.org/10.12691/jfnr-2-12-14
- Starič, P., Grobelnik Mlakar, S., & Junkar, I. (2021). Response of two different wheat varieties to glow and afterglow oxygen plasma. Plants, 10(8), 1728. https://doi.org/10.3390/plants10081728
- Starič, P., Mravlje, J., Mozetič, M., Zaplotnik, R., Šetina Batič, B., Junkar, I., & Vogel Mikuš, K. (2022). The influence of glow and afterglow cold plasma treatment on biochemistry, morphology, and physiology of wheat seeds. International Journal of Molecular Sciences, 23(13), 7369. https://doi.org/10.3390/ijms23137369
- Suhem, K., Matan, N., Nisoa, M., & Matan, N. (2013). Inhibition of Aspergillus flavus on agar media and brown rice cereal bars using cold atmospheric plasma treatment. International Journal of Food Microbiology, 161(2), 107-111. https://doi.org/10.1016/j.ijfoodmicro.2012.12.002
- Ten Bosch, L., Pfohl, K., Avramidis, G., Wieneke, S., Viöl, W., & Karlovsky, P. (2017). Plasma-based degradation of mycotoxins produced by Fusarium, Aspergillus and Alternaria species. Toxins, 9(3), 97. https://doi.org/10.3390/toxins9030097
- Thirumdas, R., Deshmukh, R., & Annapure, U. (2015). Effect of low temperature plasma processing on physicochemical properties and cooking quality of basmati rice. Innovative Food Science & Emerging Technologies, 31, 83-90. https://doi.org/10.1016/j.ifset.2015.08.003
- Tian, S., Nakamura, K., & Kayahara, H. (2004). Analysis of phenolic compounds in white rice, brown rice, and germinated brown rice. Journal of agricultural and food chemistry, 52(15), 4808-4813. https://doi.org/10.1021/jf049446f
- Velichko, I., Gordeev, I., Shelemin, A., Nikitin, D., Brinar, J., Pleskunov, P., Choukourov, A., Pazderů, K., & Pulkrábek, J. (2019). Plasma jet and dielectric barrier discharge treatment of wheat seeds. Plasma Chemistry and Plasma Processing, 39, 913-928. https://doi.org/10.1007/s11090-019-09991-8
- Wang, J., Cheng, J. H., & Sun, D. W. (2023). Enhancement of wheat seed germination, seedling growth and nutritional properties of wheat plantlet juice by plasma activated water. Journal of Plant Growth Regulation, 42(3), 2006-2022. https://doi.org/10.1007/s00344-022-10677-3
- Wang, Y., Thorup-Kristensen, K., Jensen, L. S., & Magid, J. (2016). Vigorous root growth is a better indicator of early nutrient uptake than root hair traits in spring wheat grown under low fertility. Frontiers in Plant Science, 7, 865. https://doi.org/10.3389/fpls.2016.00865
- Yodpitak, S., Mahatheeranont, S., Boonyawan, D., Sookwong, P., Roytrakul, S., & Norkaew, O. (2019). Cold plasma treatment to improve germination and enhance the bioactive phytochemical content of germinated brown rice. Food Chemistry, 289, 328-339. https://doi.org/10.1016/j.foodchem.2019.03.061
- Yong, H. I., Lee, S. H., Kim, S. Y., Park, S., Park, J., Choe, W., & Jo, C. (2019). Color development, physiochemical properties, and microbiological safety of pork jerky processed with atmospheric pressure plasma. Innovative Food Science & Emerging Technologies, 53, 78-84. https://doi.org/10.1016/j.ifset.2017.09.005
- Zahoranová, A., Henselová, M., Hudecová, D., Kaliňáková, B., Kováčik, D., Medvecká, V., & Černák, M. (2016). Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chemistry and Plasma Processing, 36, 397-414. https://doi.org/10.1007/s11090-015-9684-z
- Zulfiqar, F. (2021). Effect of seed priming on horticultural crops. Scientia Horticulturae, 286, 110197. https://doi.org/10.1016/j.scienta.2021.110197
ارسال نظر در مورد این مقاله