با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته‌ی کارشناسی ارشد مکانیزاسیون کشاورزی، گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

فرآیندهای خشک‌کردن شلتوک، همواره چالشی‌ترین مسائل صنعت برنج می‌باشد. هدف تحقیق، بررسی میزان ضایعات خشک‌کردن در مزرعه و کارخانه در سه شهرستان گیلان بود. بدین منظور، اثرهای اصلی و متقابل فاکتورهای مستقل محتوای رطوبتی زمان برداشت (19 و 26 درصد)، زمان برداشت تا خرمنکوبی (19-14، 24-20 و 29-25 ساعت)، روش‌های خشک‌کردن در مزرعه (پخش کامل شالی‌ بر روی ساقه‌ها، پخش پنج ساعت شالی‌ بر روی ساقه‌ها+توده کردن، و پخش پنج ساعت شالی‌ بر روی ساقه‌ها+استفاده از پلاستیک)، و استراحت‌دهی (دو مرحله‌ای و سه مرحله‌ای هرکدام با 10 و 15 ساعت استراحت‌دهی)، دمای خشک‌کن (40 و 50 درجه سلسیوس) و سرعت باد (0.5 و 0.8 متر بر ثانیه) بر فاکتورهای وابسته (دانه‌های نارس، گچی، دانه‌های دو و سه‌تَرَک و تَرَک لاک‌پشتی در برنج قهوه‌ای) در سال زراعی 99-1398 بررسی شدند. از طرح آزمایشی فاکتوریل بر پایه بلوک کامل تصادفی استفاده شد. براساس نتایج، اثرهای اصلی فاکتورهای مستقل بر ایجاد ضایعات معنادار بودند (0.05>P). مقایسه میانگین‌ها نشان داد که کمینه ضایعات در روش پخش‌‌کردن کامل، در محتوای رطوبتی 26 درصد، به میزان 1.465 درصد بود. بیشترین تاثیر استفاده از پلاستیک در شکل‌گیری ضایعات به شکل تَرَک لاک‌پشتی و دانه‌گچی بود. در سطح مزرعه پس از 14 تا 19 ساعت پیش ‌خشک‌کردن، بیشینه ضایعات به‌دست آمد، که سهم سه‌تَرَک ناکامل طولی، دو‌تَرَک ناکامل عرضی و دانه نارس به‌‌‌ترتیب به میزان 11.410، 8.730 و 8.471 درصد بود. در سطح کارخانه، کمترین ضایعات در ترکیب فاکتوری استراحت‌دهی سه مرحله‌ای 15 ساعت، دمای خشک‌کن 40 درجه سلسیوس و سرعت باد 0.5 متر بر ثانیه به میزان 6.027 درصد به‌دست آمد.

کلیدواژه‌ها

موضوعات

©2021 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Abayawickrama, A. S. M. T., Reinke, R. F., Fitzgerald, M. A., Harper, J. D., & Burrows, G. E. (2017). Influence of high daytime temperature during the grain filling stage on fissure formation in rice. Journal of Cereal Science, 74, 256-262. https://doi.org/10.1016/j.jcs.2017.02.013
  2. Allameh, A., & Alizadeh, M. R. (2013). Evaluating rice losses in delayed rough rice drying. International Journal of Agronomy and Plant Production, 4(4), 799-804.
  3. Anonymous. (2018). Crops. Office of statistics and information technology. Department of Planning and Economics. Ministry of Jihad-e-Agriculture of Iran. pp.87. (In Persian).
  4. ASAE. (1998). ASAE Standard 5: Moisture Relationships of Plant-based Agricultural Products. St. Joseph, MI.
  5. Bhattacharya, K. R., & Ali, S. Z. (2015). An introduction to rice-grain technology. CRC Press. https://doi.org/10.1201/b18904
  6. Bootkote, P., Soponronnarit, S., & Prachayawarakorn, S. (2016). Process of producing parboiled rice with different colors by fluidized bed drying technique including tempering. Food and Bioprocess Technology, 9(9), 1574-1586. https://link.springer.com/article/10.1007/s11947-016-1737-7
  7. Champagne, E. T., Thompson, J. F., Bett‐Garber, K. L., Mutters, R., Miller, J. A., & Tan, E. (2004). Impact of storage of freshly harvested paddy rice on milled white rice flavor. Cereal Chemistry, 81(4), 444-449. https://doi.org/10.1094/CCHEM.2004.81.4.444
  8. Dong, R., Lu, Z., Liu, Z., Koide, S., & Cao, W. (2010). Effect of drying and tempering on rice fissuring analysed by integrating intra-kernel moisture distribution. Journal of Food Engineering, 97(2), 161-167. https://doi.org/10.1016/j.jfoodeng.2009.10.005
  9. Eshtavad, R., Kalantari, D., Hashemi, S., & Pirdashti, H. (2016). Influence of drying rate and tempering period on the paddy breakage in the thin layer drying method. Journal of Research and Innovation in Food Science and Technology, 5(1), 87-104. (In Persian). https://doi.org/10.22101/JRIFST.2016.06.01.517
  10. Gazor, H., & Moumeni, A. (2019). Comparison of the paddy drying process and milling quality between re-circulating and conventional batch type dryers. Journal of Agricultural Machinery, 9(2), 365-374. (In Persian). https://doi.org/10.22067/jam.v9i2.72761
  11. Ghodrati, A., & Kalantari, D. (2016). Investigation the influence of variety, temperature and air velocity parameters in qualitative performance of a thin layer paddy dryer. Innovative Food Technologies, 4(1), 93-102. (In Persian). https://doi.org/10.22104/jift.2016.331
  12. Gilani, A., AlamiSaeed, K., Siadat, S. A., & SeyyedNejad, M. (2012). Study of heat stress effect on rice cultivars grain milling quality in Khuzestan. Crop Physiology, 4(14), 5-21. (In Persian).
  13. Gimenez, E., Salinas, M., & Manzano-Agugliaro, F. (2018). Worldwide research on plant defense against biotic stresses as improvement for sustainable agriculture. Sustainability, 10(2), 391. https://doi.org/10.3390/su10020391
  14. Golmohammadi, M., Rajabi-Hamane, M., & Hashemi, S. J. (2012). Optimization of drying–tempering periods in a paddy rice dryer. Drying Technology, 30(1), 106-113. https://doi.org/10.1080/07373937.2011.618281
  15. Heidari Soltanabadi, , Malek, S., Ghazvini, H. R., Shaaker, M., & Hedayati Zadeh, M. (2010). Losses in blade and abrasive systems by moisture content for three rice varieties. Journal of Agricultural Engineering Research, 11(1), 67-84. (In Persian).
  16. Hoon, K., Kim, O. W., Ha, A.W., & Park, S. (2016). Determination of optimal harvest time of chuchung variety green rice® (Oryza sativa) with high contents of GABA, γ-oryzanol, and α-tocopherol. Preventive Nutrition and Food Science, 21(2), 97. https://doi.org/10.3746/pnf.2016.21.2.97
  17. Jodari, F., & Linscombe, S. D. (1996). Grain fissuring and milling yields of rice cultivars as influenced by environmental conditions. Crop Science, 36(6), 1496-1502. https://doi.org/10.2135/CROPSCI1996.0011183X003600060014X
  18. Khodabakhshi Pour, M., Alizadeh, M. R., Bolouki, M. S., & Ghasemi, A. (2011). Effect of paddy moisture content, drum speed and feed rate on the qualitative losses in a paddy axial flow–thresher. Iranian Journal of Biosystems Engineering, 42(1), 37-41. (In Persian).
  19. Krzyżanowski, M., Kuna-Dibbert, B., & Schneider, J. (Eds.). (2005). Health effects of transport-related air pollution. WHO Regional Office Europe.
  20. Li, X. J., Wang, X., Li, Y., Jiang, P., & Lu, H. (2016). Changes in moisture effective diffusivity and glass transition temperature of paddy during drying. Computers and Electronics in Agriculture, 128, 112-119. https://doi.org/10.1016/j.compag.2016.08.025
  21. Mohajeran, S. H., Khoshtaghaza, M. H., & Moazami Gudarzi, A. (2006). Effect of rough rice temperature and air velocity on grain crack during infrared radiation drying. Food Science and Technology, 3(9), 57-66. (In Persian).
  22. Morita, S., Wada, H., & Matsue, Y. (2016). Counter measures for heat damage in rice grain quality under climate change. Plant Production Science, 19(1), 1-11. https://doi.org/10.1080/1343943X.2015.1128114
  23. Mukhopadhyay, S., & Siebenmorgen, T. J. (2018). Effect of airflow rate on drying air and moisture content profiles inside a cross-flow drying column. Drying Technology, 36(11), 1326-1341. https://doi.org/10.1080/07373937.2017.1402024
  24. Perdon, A., Siebenmorgen, T. J., & Mauromoustakos, A. (2000). Glassy state transition and rice drying: Development of a brown rice state diagram. Cereal Chemistry, 77(6), 708-713. https://doi.org/10.1094/CCHEM.2000.77.6.708
  25. Poomsa-ad, N., Soponronnarit, S., Prachayawarakorn, S., & Terdyothin, A. (2002). Effect of tempering on subsequent drying of paddy using fluidisation technique. Drying Technology, 20(1), 195-210. https://doi.org/10.1081/DRT-120001374
  26. Sadeghi, M., Ghasemi, A., & Mireei, S. A. (2016). Rough rice stress fissuring with respect to conditions of drying and tempering processes. Iranian Journal of Biosystems Engineering, 47(2), 278-269. (In Persian). https://doi.org/10.22059/ijbse.2016.58776
  27. Siebenmorgen, T. J., Bautista, R. C., & Counce, P. A. (2007). Optimal harvest moisture contents for maximizing milling quality of long-and medium-grain rice cultivars. Applied Engineering in Agriculture, 23(4), 517-527. https://doi.org/10.13031/2013.23476
  28. Soomro, S. A., Chen, K., & Soomro, S. A. (2020). Mathematical modelling and optimisation of low-temperature drying on quality aspects of rough rice. Journal of Food Quality, 2020(3), 1-10. https://doi.org/10.1155/2020/6501257
  29. TajaddodiTalab, K. (2005). The effect of multi passes drying on milling yield and drying time of paddy. Journal of Agricultural Engineering Research, 6, 113-124. (In Persian).
  30. Terashima, K., Saito, Y., Sakai, N., Watanabe, T., Ogata, T., & Akita, S. (2001). Effects of high air temperature in summer of 1999 on ripening and grain quality of rice. Japanese Journal of Crop Science, 70(3), 449-458. (Japanese with English abstract). https://doi.org/10.1626/JCS.70.449
  31. Truong, T., Truong, V., Fukai, S., & Bhandari, B. (2012). Changes in cracking behavior and milling quality of selected Australian rice varieties due to post drying annealing and subsequent storage. Drying Technology, 30(16), 1831-1843. https://doi.org/10.1080/07373937.2012.710692
  32. Tsukaguchi, T., & Iida, Y. (2008). Effects of assimilate supply and high temperature during grain-filling period on the occurrence of various types of chalky kernels in rice plants (Oryza sativa). Plant Production Science, 11(2), 203-210. https://doi.org/10.1626/pps.11.203
  33. Udomkun, P., Romuli, S., Schock, S., Mahayothee, B., Sartas, M., Wossen, T., Njukwe, E., Vanlauwe, B., & Müller, J. (2020). Review of solar dryers for agricultural products in Asia and Africa: An innovation landscape approach. Journal of Environmental Management, 268, 2020. https://doi.org/10.1016/j.jenvman.2020.110730
  34. Xangsayasane, P., Vongxayya, K., Phongchanmisai, S., Mitchell, J., & Fukai, S. (2019). Rice milling quality as affected by drying method and harvesting time during ripening in wet and dry seasons. Plant Production Science, 22(1), 98-106. https://doi.org/10.1080/1343943X.2018.1544463
  35. Yılmaz, F., Yılmaz Tuncel, N., & Tuncel, N. B. (2018). Stabilization of immature rice grain using infrared radiation. Food Chemistry, 253, 269-276. https://doi.org/10.1016/j.foodchem.2018.01.172
  36. Zhou, C., Huang, Y., Jia, B., Wang, Y., Wang, Y., Xu, Q., Li, R., Wang, S., & Dou. F. (2016). Effects of cultivar, nitrogen rate, and planting density on rice-grain quality. Agronomy, 8(11), 246. https://doi.org/10.3390/agronomy8110246
  37. Zou, G. H., Liu, H. Y., Mei, H. W., Liu, G. L., Yu, X. Q., Li, M. S., Wu, J. H., Chen, L., & Luo, L. J. (2007). Screening for drought resistance of rice recombinant inbred populations in the field. Journal of Integrative Plant Biology, 49(10), 1508-1516. https://doi.org/10.1111/j.1672-9072.2007.00560.x
CAPTCHA Image