با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی لاتین

نویسندگان

گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

در تلاش برای بهبود عملکرد و پایداری هضم بی‌هوازی (AD)، افزودنی‌های مبتنی بر آهن به‌عنوان ریزمغذی‌ها و لجن تصفیه آب آشامیدنی (DWTS) می‌توانند نقش کلیدی داشته باشند. این مطالعه به بررسی سینتیک تولید متان در طول AD کودهای گاوی می‌پردازد که شامل غلظت‌های مختلف Fe و Fe3O4 (10، 20 و 30 میلی‌گرم در لیتر) و DWTS (6، 12 و 18 میلی‌گرم در لیتر) می‌شود. با استفاده از یک کتابخانه گسترده از مدل‌های رگرسیون غیرخطی (NLR)، 26 نامزد مورد بررسی قرار گرفتند و هشت مورد به‌عنوان پیش‌بینی‌کننده‌های قوی برای کل فرآیند تولید متان ظاهر شدند. مدل Michaelis-Menten به‌عنوان انتخاب برتر برجسته شد و سینتیک کودهای دامی AD را با افزودنی‌های مشخص‌شده آشکار کرد. یافته‌ها نشان داد که سطوح مختلف DWTS بالاترین تولید متان را به‌همراه دارد، در حالی‌که Fe3O420 و Fe3O430 کمترین میزان را ثبت کردند. قابل‌ذکر است، DWTS6 تولید متان تقریباً 34% و 42% را در مقایسه با Fe20 و Fe3O430 نشان داد و آن را به‌عنوان موثرترین تیمار معرفی کرد. علاوه بر این، DWTS12 بالاترین میزان تولید متان را به نمایش گذاشت و به 6/147 سی‌سی در روز ششم رسید. با تأکید بر مفاهیم عملی، این تحقیق بر کاربرد مدل پیشنهادی برای تجزیه و تحلیل سایر پارامترها و بهینه‌سازی عملکرد AD تأکید می‌کند. این مطالعه با بررسی پتانسیل افزودنی‌های مبتنی بر آهن و DWTS، مسیر را در تولید متان از کودهای گاوی و پیشبرد شیوه‌های مدیریت زباله پایدار هموار می‌سازد.

کلیدواژه‌ها

موضوعات

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Abdelsalam, E., Samer, M., Attia, Y., Abdel-Hadi, M., Hassan, H., & Badr, Y. (2016). Comparison of nanoparticles effects on biogas and methane production from anaerobic digestion of cattle dung slurry. Renewable Energy, 87, 592-598. https://doi.org/10.1016/j.renene.2015.10.053
  2. Abdelsalam, E., Samer, M., Attia, Y. A., Abdel-Hadi, M. A., Hassan, H. E., & Badr, Y. (2017). Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure. Energy, 120, 842-853. https://doi.org/10.1016/j.energy.2016.11.137
  3. Ahmad, T., Ahmad, K., & Alam, M. (2016). Sustainable management of water treatment sludge through 3 ‘R’concept. Journal of Cleaner Production, 124, 1-13. https://doi.org/10.1016/j.jclepro.2016.02.073
  4. Al Seadi, T., Rutz, D., Prassl, H., Köttner, M., Finsterwalder, T., Volk, S., & Janssen, R. (2008). Biogas Handbook; University of Southern Denmark Esbjerg: Esbjerg, Denmark, 2008. Google Scholar.
  5. Ali, A., Mahar, R. B., Soomro, R. A., & Sherazi, S. T. H. (2017). Fe3O4 nanoparticles facilitated anaerobic digestion of organic fraction of municipal solid waste for enhancement of methane production. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(16), 1815-1822. https://doi.org/10.1080/15567036.2017.1384866
  6. Andriamanohiarisoamanana, F. J., Ihara, I., Yoshida, G., & Umetsu, K. (2020). Kinetic study of oxytetracycline and chlortetracycline inhibition in the anaerobic digestion of dairy manure. Bioresource Technology, 315, 123810. https://doi.org/10.1016/j.biortech.2020.123810
  7. APHA. (2005). Standard Methods for the Examination of Water and Wastewater. 21st ed. American Public Health Association, Washington DC, 1220p.
  8. Archontoulis, S. V., & Miguez, F. E. (2015). Nonlinear regression models and applications in agricultural research. Agronomy Journal, 107(2), 786-798. https://doi.org/10.2134/agronj2012.0506
  9. Casals, E., Barrena, R., Garcia, A., González, E., Delgado, L., Busquets-Fité, M., Font Segura, X., Arbiol, J., Glatzel, P., Kvashnina, K., Sánchez, A., & Puntes, V. (2014). Programmed Iron Oxide Nanoparticles Disintegration in Anaerobic Digesters Boosts Biogas Production. Small (Weinheim an Der Bergstrasse, Germany), 10. https://doi.org/10.1002/smll.201303703
  10. Chen, R., Konishi, Y., & Nomura, T. (2018). Enhancement of methane production by Methanosarcina barkeri using Fe3O4 nanoparticles as iron sustained release agent. Advanced Powder Technology, 29(10), 2429-2433. https://doi.org/10.1016/j.apt.2018.06.022
  11. Cheng, J., Zhu, C., Zhu, J., Jing, X., Kong, F., & Zhang, C. (2020). Effects of waste rusted iron shavings on enhancing anaerobic digestion of food wastes and municipal sludge. Journal of Cleaner Production, 242, 118195. https://doi.org/10.1016/j.jclepro.2019.118195
  12. Choong, Y. Y., Norli, I., Abdullah, A. Z., & Yhaya, M. F. (2016). Impacts of trace element supplementation on the performance of anaerobic digestion process: A critical review. Bioresource Technology, 209, 369-379. https://doi.org/10.1016/j.biortech.2016.03.028
  13. Demirel, B., & Scherer, P. (2011). Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass and Bioenergy, 35(3), 992-998. https://doi.org/10.1016/j.biombioe.2010.12.022
  14. Dudley, B. (2019). BP statistical review of world energy 2016. British Petroleum Statistical Review of World Energy, Bplc. editor, Pureprint Group Limited, UK.
  15. Ebrahimi-Nik, M., Heidari, A., Azghandi, S. R., Mohammadi, F. A., & Younesi, H. (2018). Drinking water treatment sludge as an effective additive for biogas production from food waste; kinetic evaluation and biomethane potential test. Bioresource Technology, 260, 421-426. https://doi.org/10.1016/j.biortech.2018.03.112
  16. Ebrahimzade, I., Ebrahimi-Nik, M., Rohani, A., & Tedesco, S. (2021). Higher energy conversion efficiency in anaerobic degradation of bioplastic by response surface methodology. Journal of Cleaner Production, 290, 125840. https://doi.org/10.1016/j.jclepro.2021.125840
  17. Ebrahimzade, I., Ebrahimi-Nik, M., Rohani, A., & Tedesco, S. (2022). Towards monitoring biodegradation of starch-based bioplastic in anaerobic condition: Finding a proper kinetic model. Bioresource Technology, 347, 126661. https://doi.org/10.1016/j.biortech.2021.126661
  18. Gkotsis, P., Kougias, P., Mitrakas, M., & Zouboulis, A. (2023). Biogas upgrading technologies–Recent advances in membrane-based processes. International Journal of Hydrogen Energy, 48(10), 3965-3993. https://doi.org/10.1016/j.ijhydene.2022.10.228
  19. Hao, X., Wei, J., van Loosdrecht, M. C., & Cao, D. (2017). Analysing the mechanisms of sludge digestion enhanced by iron. Water Research, 117, 58-67. https://doi.org/10.1016/j.watres.2017.03.048
  20. Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Bougrier, C., Buffière, P., Carballa, M., & De Wilde, V. (2016). Towards a standardization of biomethane potential tests. Water Science and Technology, 74(11), 2515-2522. https://doi.org/10.2166/wst.2016.336
  21. Huiliñir, C., Montalvo, S., & Guerrero, L. (2015). Biodegradability and methane production from secondary paper and pulp sludge: effect of fly ash and modeling. Water Science and Technology, 72(2), 230-237. https://doi.org/10.2166/wst.2015.210
  22. Huiliñir, C., Pinto-Villegas, P., Castillo, A., Montalvo, S., & Guerrero, L. (2017). Biochemical methane potential from sewage sludge: Effect of an aerobic pretreatment and fly ash addition as source of trace elements. Waste Management, 64, 140-148. https://doi.org/10.1016/j.wasman.2017.03.023
  23. Karki, R., Chuenchart, W., Surendra, K. C., Sung, S., Raskin, L., & Khanal, S. K. (2022). Anaerobic co-digestion of various organic wastes: Kinetic modeling and synergistic impact evaluation. Bioresource Technology, 343, 126063. https://doi.org/10.1016/j.biortech.2021.126063
  24. Khamis, A. (2005). Nonlinear growth models for modeling oil palm yield growth. Journal of Mathematics and Statistics, 1(3), 225-233. https://doi.org/3844/jmssp.2005.225.232
  25. Kong, X., Yu, S., Xu, S., Fang, W., Liu, J., & Li, H. (2018). Effect of FeO addition on volatile fatty acids evolution on anaerobic digestion at high organic loading rates. Waste Management, 71, 719-727. https://doi.org/10.1016/j.wasman.2017.03.019
  26. Lima, D. R. S., Adarme, O. F. H., Baˆeta, B. E. L., Gurgel, L. V. A., & de Aquino, S. F. (2018). Influence of different thermal pretreatments and inoculum selection on the biomethanation of sugarcane bagasse by solid-state anaerobic digestion: A kinetic analysis. Industrial Crops and Products, 111, 684-693. https://doi.org/10.1016/j.indcrop.2017.11.048
  27. Lu, J., & Gao, X. (2021). Biogas: Potential, challenges, and perspectives in a changing China. Biomass and Bioenergy, 150, 106127. https://doi.org/10.1016/j.biombioe.2021.106127
  28. Muddasar, M. (2022). Biogas production from organic wastes and iron as an additive–a short review. Preprints.org 2022, 2022010026. https://doi.org/10.20944/preprints202201.0026.v1
  29. Masih-Das, J., & Tao, W. (2018). Anaerobic co-digestion of foodwaste with liquid dairy manure or manure digestate: Co-substrate limitation and inhibition. Journal of Environmental Management, 223, 917-924. https://doi.org/10.1016/j.jenvman.2018.07.016
  30. Noonari, A. A., Mahar, R. B., Sahito, A. R., & Brohi, K. M. (2019). Anaerobic co-digestion of canola straw and banana plant wastes with buffalo dung: Effect of Fe3O4 nanoparticles on methane yield. Renewable Energy, 133, 1046-1054. https://doi.org/10.1016/j.renene.2018.10.113
  31. Pardilhó, S., Pires, J. C., Boaventura, R., Almeida, M., & Dias, J. M. (2022). Biogas production from residual marine macroalgae biomass: Kinetic modeling approach. Bioresource Technology, 359, 127473. https://doi.org/10.1016/j.biortech.2022.127473
  32. Raposo, F., De la Rubia, M., Fernández-Cegrí, V., & Borja, R. (2012). Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renewable and Sustainable Energy Reviews, 16(1), 861-877. https://doi.org/10.1016/j.rser.2011.09.008
  33. Rosato, M. A. (2017). Managing biogas plants: A practical guide. CRC Press.
  34. Schmidt, T., Nelles, M., Scholwin, F., & Proter, J. (2014). Trace element supplementation in the biogas production from wheat stillage– optimization of metal dosing. Bioresource Technology, 168, 80-85. https://doi.org/10.1016/j.biortech.2014.02.124
  35. Stoddard, I. (2010). Communal polyethylene biogas systems: Experiences from on-farm research in rural West Java.
  36. Torres-Lozada, P., Díaz-Granados, J. S., & Parra-Orobio, B. A. (2015). Effects of the incorporation of drinking water sludge on the anaerobic digestion of domestic wastewater sludge for methane production. Water Science and Technology, 72(6), 1016-1021. https://doi.org/10.2166/wst.2015.291
  37. Wang, M., Tang, S. X., & Tan, Z. L. (2011). Modeling in vitro gas production kinetics: derivation of logistic–exponential (LE) equations and comparison of models. Animal Feed Science and Technology, 165(3-4), 137-150. https://doi.org/10.1016/j.anifeedsci.2010.09.016
  38. Wang, K., Yun, S., Xing, T., Li, B., Abbas, Y., & Liu, X. (2021). Binary and ternary trace elements to enhance anaerobic digestion of cattle manure: Focusing on kinetic models for biogas production and digestate utilization. Bioresource Technology, 323, 124571. https://doi.org/10.1016/j.biortech.2020.124571
  39. Wellinger, A., Murphy, J. D., & Baxter, D. (2013). The biogas handbook: science, production and applications. Elsevier.
  40. Zareei, S. (2018). Evaluation of biogas potential from livestock manures and rural wastes using GIS in Iran. Renewable Energy, 118, 351-356. https://doi.org/10.1016/j.renene.2017.11.026
  41. Zhang, Y., Feng, Y., Yu, Q., Xu, Z., & Quan, X. (2014). Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron. Bioresource Technology, 159, 297-304. https://doi.org/10.1016/j.biortech.2014.02.114
  42. Zhao, Z., Li, Y., Quan, X., & Zhang, Y. (2017). Towards engineering application: Potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials. Water Research, 115, 266-277. https://doi.org/10.1016/j.watres.2017.02.067
CAPTCHA Image