with the collaboration of Iranian Society of Mechanical Engineers (ISME)

Document Type : Research Article

Authors

1 University of Tabriz

2 Shiraz University

Abstract

Bioethanol production from agricultural residues is one of the promising methods. Pretreatment is the most important step in this type of bioethanol production. In this study, the saccharification percentage of sugarcane bagasse was investigated after two types of pretreatments including ozone steaming and microwave. Microwave pretreatment was studied with two factors of microwave radiation (170, 450, and 850 w) and microwave duration (2, 6, and 10 min). The ozonolysis (ozone steaming) pretreatment was surveyed with two factors of moisture content of bagasse (30, 40, and 50%) and ozonolysis time (1.5, 2.5, 3.5, and 4.5 hr). After hydrolysis, the Saccharification percentage of sugarcane bagasse increased to 57.2% and 67.06% with microwave and ozonolysis pretreatments, respectively; compare to 20.85% in non-ozonated bagasse. It can be concluded that the ozonolysis is the most effective pretreatment regarding to saccharification percentage of sugarcane bagasse.

Keywords

1. Amat, A. M., A. Arques, M. A. Miranda, and F. Lopez. 2005. Use of ozone and/or UV in the treatment of effluents from board paper industry. Chemosphere 60: 1111-1117.
2. Bil, Z., T. Yanl, and Y. Wen. 2009. Bagasse cooking with pretreatment of microwave radiation. Light Industry and Food Engineering 04: 412-420.
3. Chen, H. W., and K. H. Shen. 2011. Disruption of sugarcane bagasse lignocellusic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Applied energy 88: 2726-2734.
4. Clark, A. J. 1997. Biodegradation of cellulose: Enzymeology and Biothechnology. Technomic Publishing Co, Lanchester, Pennsylvania.
5. Coca, M., M. Peña, and G. Gonzalez. 2005. Variables affecting efficiency of molasses fermentation waste water ozonization. Chemosphere 60: 1408-1415.
6. Gan, Q., S. J. Allen, and G. Taylor. 2003. Kinetic dynamics in heterogeneous enzymatic of cellulose: A review, An experimental study and mathematical modeling. Process Biochemistry 38: 1003-1018.
7. Garcia-Cubero, M. T., G. Gonzalez-Benito, I. Indacoechea, M. Coca, and S. Bolado. 2009. Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresource Technology 100: 1608-1613.
8. Hamelinck, N. C., G. V. Hooijdonk, and A. P. Faaij. 2005. Ethanol from lignocellulosic biomass: Techno-economic performance in short-, middle- and long-term. Biomss and Bioenergy 28: 384-410.
9. Holtzapple, M. T., R. Macrae, R. K. Robinson, and M. J. Sadler. 1993. Chapters ‘cellullose’, ‘hemicelluloses’, and ‘lignin’.In encyclopedia of food science, food technology, and nutrition. Academic Press, London, 758–767, 2324–2334, 2731–2738.
10. Iglesias, S. C. 2002. Degradation and biodegradability enhancement of nitrobenzene and
2,4-dichlorophenol by means of advanced oxidation processes based on ozone. PhD Thesis. Faculty of Chemistry. University of Barcelona, Catalanes, Spain.
11. Imai, M., K. Ikari, and I. Suzuki. 2004. High performance hydrolysis of sellulose using mixed cellulose species and ultrasonication pretreatment. Biochemical Engineering Journal 17: 79-83.
12. Keshwani, D. R., J. J. Cheng. 2010. Microwave-based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol broduction. Biotechnology Progress 26(3): 644-652.
13. Lee, M. J., and H. Jamal. 2010. Effect of ozone and autohydrolysis pretreatment on enzymatic digestibility on costal bermoda grass. Bioresources 5 (2): 1084-1101.
14. Lynd, L. R., C. E. Wyman, and T. U. Gerngross. 1999. Biocommodity engineering. Biotechnol Progress 15: 777-793.
15. Mosier, N., C. Wyman, B. Dale, R. Elander, Y. Y. Lee, M. Holtzapple, and M. Ladisch. 2005. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96: 673-686.
16. Roncero, M. B., A. L. Torres, J. F. Colom and T. Vidal, 2003. TCF bleaching of wheat straw pulp using ozone and xylanase. Part A: paper quality assessment. Bioresource Technology, 87:305–314.
17. Shatalov, A. A., H. Pereira, and L. Arundo. 2008. New perspectives for pulping and bleaching: Ozone-based TCF bleaching and organosolv pulps. Bioresource Technology 99: 472-478.
18. Silverstein, R. A., Y. Chen, R. R. Sharma-Shivappa, M. D. Boyette, and J. Osborne. 2007. Acomparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresource Technology 98: 3000-3011.
19. Sun, Y., and J. Cheng. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology 83: 1-11.
20. Taherzadeh, M. J., and K. Karimi. 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production. International Journal of Molecular Science 9(9): 697-709.
21. Vidal, P. F., and J. Molinier. 1988. Ozonolysis of lignin, improvement of digestibility of poplar sawdust. Biomass 16(1): 1-17.
22. Wooley, R., M. Ruth, J. Sheehan, K. Ibsen, H. Majdeski, and A. Galvez. 1999. Lignocellulosic biomass to ethanol process design and economic sutilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis: Current and futuristic scenarios. National Renewable Energy Laboratory, U.S. Department of Energy Laboratory Operated by Midwest Research Institute, Battelle, Bechtel.
23. Zhao, X., L. Zhang, and D. Liu. 2008. Comparative study on chemical pretreatment methods for improving enzymatic digestibility of croton weed stem. Bioresource Technology 99: 3729-3736.
CAPTCHA Image