با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی لاتین

نویسندگان

1 بخش مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران

2 بخش مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه جهرم، جهرم، ایران

3 دانش‌آموخته دکتری، بخش مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران

چکیده

تردد ماشین‌های کشاورزی با اعمال تنش بر سطح خاک دلیل اصلی تراکم خاک‌های کشاورزی است. مطالعه انتشار تنش در خاک نیاز به اندازه‌گیری تنش در خاک دارد، در حالی‌که تنش اندازه‌گیری‌شده با نصب هر نوع کاوشگر ممکن است با تنش واقعی خاک، یعنی تنش خاک در غیاب کاوشگر متفاوت باشد. این مطالعه با هدف شبیه‌سازی برهم‌کنش کاوشگر تنش در زیر یک چرخ صلب متحرک با استفاده از روش اجزای محدود به‌منظور بررسی تطابق تنش شبیه‌سازی‌شده با کاوشگر با تنش تجربی اندازه‌گیری‌شده در یک مخزن خاک انجام شد. خاک به‌عنوان یک ماده کشسان- خمیری مدل‌سازی و خواص آن با شبیه‌سازی نفوذ مخروط و نشست چرخ در خاک کالیبره شد. نتایج نشان داد که تنش به‌دست‌آمده از پروب با روش اجزای محدود به‌طور متوسط 28 درصد بیش‌تخمینی در مقایسه با تنش تجربی برای بارهای چرخ 600 و 1200 نیوتن داشته است. میانگین نسبت شبیه‌سازی‌شده تنش با کاوشگر به تنش بدون کاوشگر برای دو آزمون 1.22 به‌دست آمد که به‌طور معنی‌داری کوچک‌تر از همین نسبت تحت بارگذاری نشست صفحه دایره‌ای با مقدار 1.9 بود و همچنین به‌طور قابل‌توجهی بزرگ‌تر از نتیجه به‌به‌دست‌آمده از روش اجزای گسسته است. افزایش سرعت حرکت چرخ افزایشی جزئی در تنش خاک را نشان داد. نسبت بیش تخمینی تنش (همان نسبت تنش با کاوشگر به تنش بدون کاوشگر) به‌طور قابل‌توجهی با عمق افزایش یافت ولی افزایش کمی با سرعت در عمق زیر 0.2 متر داشت.

کلیدواژه‌ها

موضوعات

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. ABAQUS, (2019). ABAQUS user’s manuals version 6.19.1. Provid. RI ABAQUS, Inc. van den.
  2. Acquah, K., & Chen, Y. (2021). Discrete element modeling of soil compaction of a press-wheel. AgriEngineering, 3, 278-293. https://doi.org/10.3390/agriengineering3020019
  3. Akker, J. J. (2004). SOCOMO: a soil compaction model to calculate soil stresses and the subsoil carrying capacity. Soil and Tillage Research, 79, 113-127. https://doi.org/10.1016/j.still.2004.03.021
  4. Arefi, M., Karparvarfard, S. H., Azimi-Nejadian, H., & Naderi-Boldaji, M. (2022). Draught force prediction from soil relative density and relative water content for a non-winged chisel blade using finite element modelling. Journal of Terramechanics100, 73-80. https://doi.org/10.1016/j.jterra.2022.01.001
  5. Azimi-Nejadian, H., Karparvarfard, S. H., Naderi-Boldaji, M., & Rahmanian-Koushkaki, H. (2019). Combined finite element and statistical models for predicting force components on a cylindrical mouldboard plough. Biosystems Engineering186, 168-181. https://doi.org/10.1016/j.biosystemseng.2019.07.007
  6. Bahrami, M., Naderi-Boldaji, M., Ghanbarian, D., & Keller, T. (2022). Simulation of soil stress under plate sinkage loading: A comparison of finite element and discrete element methods. Soil and Tillage Research223, 105463. https://doi.org/10.1016/j.still.2022.105463
  7. Bahrami, M., Naderi-Boldaji, M., Ghanbarian, D., & Keller, T. (2023). Discrete element modelling of stress propagation in soil under a rigid wheel in a soil bin։ a simulation of probe inducing stress deviation and wheel speed. Biosystems Engineering230, 159-170. https://doi.org/10.1016/j.biosystemseng.2023.04.013
  8. Bolling, I. H. (1985). How to predict soil compaction from agricultural tires. Journal of Terramechanics22(4), 205-223. https://doi.org/10.1016/0022-4898(85)90017-5
  9. Boussinesq, M. J. (1885). Application Des Potentiels. Gauthier-Villars. https://books.google.com/books?id¼IYvpq89K_O8C
  10. Cueto, O. G., Coronel, C. E. I., Bravo, E. L., Morfa, C. A. R., & Suárez, M. H. (2016). Modelling in FEM the soil pressures distribution caused by a tyre on a Rhodic Ferralsol soil. Journal of Terramechanics63, 61-67. https://doi.org/10.1016/j.jterra.2015.09.003
  11. de Lima, R. P., & Keller, T. (2021). Soil stress measurement by load cell probes as influenced by probe design, probe position, and soil mechanical behavior. Soil and Tillage Research205, 104796. https://doi.org/10.1016/j.still.2020.104796
  12. De Pue, J., & Cornelis, W. M. (2019). DEM simulation of stress transmission under agricultural traffic Part 1: Comparison with continuum model and parametric study. Soil and Tillage Research195, 104408. https://doi.org/10.1016/j.still.2019.104408
  13. De Pue, J., Lamandé, M., & Cornelis, W. (2020). DEM simulation of stress transmission under agricultural traffic Part 2: Shear stress at the tyre-soil interface. Soil and Tillage Research203, 104660. https://doi.org/10.1016/j.still.2020.104660
  14. Farhadi, P., Golmohammadi, A., Sharifi Malvajerdi, A., & Shahgholi, G. (2020). Finite element modeling of the interaction of a treaded tire with clay-loam soil. Computers and Electronics in Agriculture, 162,793-806. https://doi.org/10.1016/j.compag.2019.05.031
  15. Frohlich, O. K. (1934). Druckverteilung im Baugrunde. Springer Verlag, Wien, pp. 178
  16. Gheshlaghi, F., & Mardani, A. (2021). Prediction of soil vertical stress under off-road tire using smoothed-particle hydrodynamics. Journal of Terramechanics95, 7-14. https://doi.org/10.1016/j.jterra.2021.02.004
  17. Hamza, M. A., & Anderson, W. K. (2005). Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil and Tillage Research82(2), 121-145. https://doi.org/10.1016/j.still.2004.08.009
  18. Horn, R., Blackwell, P. S., & White, R. (1989). The effect of speed of wheeling on soil stresses, rut depth and soil physical properties in an ameliorated transitional red-brown earth. Soil and Tillage Research, 13, 353e364. https://doi.org/10.1016/0167-1987(89)90043-3
  19. Ibrahmi, A., Bentaher, H., Hbaieb, M., Maalej, A., & Mouazen, A. M. (2015). Study the effect of tool geometry and operational conditions on mouldboard plough forces and energy requirement: Part 1. Finite element simulation. Computers and Electronics in Agriculture, 117, 258-267. https://doi.org/10.1016/j.compag.2015.08.006
  20. Jimenez, K. J., Rolim, M. M., Gomes, I. F., de Lima, R. P., Berrío, L. L. A., & Ortiz, P. F. (2021). Numerical analysis applied to the study of soil stress and compaction due to mechanised sugarcane harvest. Soil and Tillage Research206, 104847. https://doi.org/10.1016/j.still.2020.104847
  21. Keller, T., Défossez, P., Weisskopf, P., Arvidsson, J., & Richard, G. (2007). SoilFlex: A model for prediction of soil stresses and soil compaction due to agricultural field traffic including a synthesis of analytical approaches. Soil and Tillage Research93(2), 391-411. https://doi.org/10.1016/j.still.2006.05.012
  22. Keller, T., Lamandé, M., Naderi-Boldaji, M., & de Lima, R. P. (2022). Soil Compaction Due to Agricultural Field Traffic: An Overview of Current Knowledge and Techniques for Compaction Quantification and Mapping. In: Saljnikov, E., Mueller, L., Lavrishchev, A., Eulenstein, F. (eds) Advances in Understanding Soil Degradation. Innovations in Landscape Research. Springer, Cham. https://doi.org/10.1007/978-3-030-85682-3_13
  23. Keller, T., Ruiz, S., Stettler, M., & Berli, M. (2016). Determining soil stress beneath a tire: measurements and simulations. Soil Science Society of America Journal80(3), 541-553. https://doi.org/10.2136/sssaj2015.07.0252
  24. Khalid, U., Farooq, K., & Mujtaba, H. (2018). On yield stress of compacted clays. International Journal of Geo-Engineering, 9(1), 1-16. https://doi.org/1186/s40703-018-0090-2
  25. Kirby, J. M. (1999a). Soil stress measurement: Part I. Transducer in a uniform stress field. Journal of Agricultural Engineering Research72(2), 151-160. https://doi.org/10.1006/jaer.1998.0357
  26. Kirby, J. M. (1999b). Soil stress measurement. Part 2: transducer beneath a circular loaded area. Journal of Agricultural Engineering Research73(2), 141-149. https://doi.org/10.1006/jaer.1998.0400
  27. Koolen, A. J., & Kuipers, H. (1983). Agricultural Soil Mechanics: Advanced Series in Agricultural Sciences Springer, Heidelberg, 241 pp. https://doi.org/10.1007/978-3-642-69010-5
  28. Labuz, J. F., & Theroux, B. (2005). Laboratory calibration of earth pressure cells. Geotechnical Testing Journal28(2), 188-196. https://doi.org/10.1520/GTJ12089
  29. Mahboub Yangeje, H., & Mardani, A. (2022). Investigating the interaction between soil and cultivator blade by numerical simulation and validation of results by soil bin tests. Journal of Agricultural Machinery12(4), 587-599. (in Persian with English abstract). https://doi.org/10.22067/jam.2021.70572.1041
  30. Naderi-Boldaji, M., Alimardani, R., Hemmat, A., Sharifi, A., Keyhani, A., Tekeste, M. Z., & Keller, T. (2013). 3D finite element simulation of a single-tip horizontal penetrometer–soil interaction. Part I: Development of the model and evaluation of the model parameters. Soil and Tillage Research, 134, 153-162. https://doi.org/10.1016/j.still.2013.08.002
  31. Naderi-Boldaji, M., Kazemzadeh, A., Hemmat, A., Rostami, S., & Keller, T. (2018). Changes in soil stress during repeated wheeling: A comparison of measured and simulated values. Soil Research, 56(2), 204-214. https://doi.org/10.1071/SR17093
  32. Naderi-Boldaji, M., Hajian, A., Ghanbarian, D., & Bahrami, M. (2018). Finite element simulation of plate sinkage, confined and semi-confined compression tests: A comparison of the response to yield stress. Soil and Tillage Research, 179, 63-70. https://doi.org/10.1016/j.still.2018.02.003
  33. Naderi-Boldaji, M., Karparvarfard, S. H., & Azimi-Nejadian, H. (2023). Investigation of the predictability of mouldboard plough draught from soil mechanical strength (cone index shear strength) using finite element modelling. Journal of Terramechanics108, 21-31. https://doi.org/10.1016/j.jterra.2023.04.001
  34. Nawaz, M. F., Bourrie, G., & Trolard, F. (2013). Soil compaction impact and modelling. A review. Agronomy for sustainable development33, 291-309. https://doi.org/10.1007/s13593-011-0071-8
  35. Or, D., & Ghezzehei, T. A. (2002). Modeling post-tillage soil structural dynamics: a review. Soil and Tillage Research64(1-2), 41-59. https://doi.org/10.1016/S0167-1987(01)00256-2
  36. Peth, S., Horn, R., Fazekas, O., & Richards, B. G. (2006). Heavy soil loading its consequence for soil structure, strength, deformation of arable soils. Journal of Plant Nutrition and Soil Science169(6), 775-783. https://doi.org/10.1002/jpln.200620112
  37. Pytka, J. A. (2013). Dynamics of wheelesoil systems: A soil stress and deformation-based approach. CRC Press, Taylor & Francis Group, LLC. https://doi.org/10.1201/b12729
  38. Rücknagel, J., Hofmann, B., Deumelandt, P., Reinicke, F., Bauhardt, J., Hülsbergen, K. J., & Christen, O. (2015). Indicator based assessment of the soil compaction risk at arable sites using the model REPRO. Ecological Indicators52, 341-352. https://doi.org/10.1016/j.ecolind.2014.12.022
  39. Schjønning, P., Lamandé, M., Tøgersen, F. A., Arvidsson, J., & Keller, T. (2008). Modelling effects of tyre inflation pressure on the stress distribution near the soil–tyre interface. Biosystems Engineering99(1), 119-133. https://doi.org/10.1016/j.biosystemseng.2007.08.005
  40. Shahgholi, G., Ghafouri Chiyaneh, H., & Mesri Gundoshmian, T. (2018). Modeling of soil compaction beneath the tractor tire using multilayer perceptron neural networks. Journal of Agricultural Machinery, 8(1), 105-118. (in Persian with English abstract). https://doi.org/10.22067/jam.v8i1.58891
  41. Shmulevich, I., Mussel, U., & Wolf, D. (1998). The effect of velocity on rigid wheel performance. Journal of Terramechanics35(3), 189-207. https://doi.org/10.1016/S0022-4898(98)00022-6
  42. Silva, R. P., Rolim, M. M., Gomes, I. F., Pedrosa, E. M., Tavares, U. E., & Santos, A. N. (2018). Numerical modeling of soil compaction in a sugarcane crop using the finite element method. Soil and Tillage Research181, 1-10. https://doi.org/10.1016/j.still.2018.03.019
  43. Söhne, W. (1953). Druckverteilung im Boden und Bodenformung unter Schlepperreifen (Pressure distribution in the soil and soil deformation under tractor tyres). Grundl Land Technik, 5, 49-63. https://doi.org/10.1007/BF01512930
  44. Stafford, J. V., & de Carvalho Mattos, P. (1981). The effect of forward speed on wheel-induced soil compaction: laboratory simulation and field experiments. Journal of Agricultural Engineering Research26(4), 333-347. https://doi.org/10.1016/0021-8634(81)90075-5
  45. Stettler, M., Keller, T., Weisskopf, P., Lamandé, M., Lassen, P., & Schjønning, P. (2014). Terranimo®–a web-based tool for evaluating soil compaction. Landtechnik69(3), 132-138.
  46. Taghavifar, H., & Mardani, A. (2014). Effect of velocity, wheel load and multipass on soil compaction. Journal of the Saudi Society of Agricultural Sciences13(1), 57-66. https://doi.org/10.1016/j.jssas.2013.01.004
  47. Ucgul, M., Saunders, C., & Fielke, J. M. (2017). Particle and geometry scaling of the hysteretic spring/linear cohesion contact model for discrete element modelling of soil-tool simulation. ASABE Paper No. 1701372. St. Joseph, MI: ASABE. https://doi.org/10.13031/aim.201701372
  48. Van den Akker, J. J. H. (2004). SOCOMO: a soil compaction model to calculate soil stresses and the subsoil carrying capacity. Soil and Tillage Research79(1), 113-127. https://doi.org/10.1016/j.still.2004.03.021
  49. Weiler Jr, W. A., & Kulhawy, F. H. (1982). Factors affecting stress cell measurements in soil. Journal of the Geotechnical Engineering Division108(12), 1529-1548. https://doi.org/10.1061/AJGEB6.0001393
  50. Xia, K. (2011). Finite element modeling of tire/terrain interaction: Application to predicting soil compaction and tire mobility. Journal of Terramechanics48(2), 113-123. https://doi.org/10.1016/j.jterra.2010.05.001
CAPTCHA Image