با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه کردستان، سنندج، ایران

2 گروه فیزیک، دانشکده علوم پایه، دانشگاه کردستان، سنندج، ایران

چکیده

افت زیاد مواد شیمیایی، بادبردگی و نشست خارج از هدف سم‌پاش‌های متداول در ایران، مطالعه روی سم‌پاش‌های باردارکننده سم را ضروری می‌سازد. به‌همین منظور یک کلاهک الکترودینامیکی طراحی و ساخته شد. در این تحقیق از روش سطح پاسخ برای بهینه‌سازی عملکرد کلاهک پاشش الکترودینامیکی در سم‌پاش پشتی موتوری ذره‌ای‌پاش استفاده شده است. پارامترهای فاصله افشانک تا هدف (شامل سه سطح 2، 4 و 6 متری)، زاویه قرارگیری هدف (شامل سه سطح صفر، 45 و 90 درجه) و سرعت باد (شامل سه سطح 2.5، 3 و 3.5 متر بر ثانیه) به‌عنوان پارامترهای مستقل و یکنواختی پاشش و درصد سطح پاشش به‌عنوان متغیرهای وابسته مورد ارزیابی قرار گرفتند. نتایج تجزیه واریانس نشان داد که مولفه‌های خطی زاویه پاشش و فاصله پاشش و هم‌چنین برهم‌کنش زاویه پاشش×فاصله پاشش و فاصله پاشش×سرعت باد، دارای تاثیر معنی‌داری بر تغییرات ضریب پاشش کل می‌باشند (p<0.05). بیش‌ترین ضریب یکنواختی پاشش کل برابر با 1.95 برای زاویه قرارگیری هدف صفر درجه، فاصله 6 متری و سرعت 3.5 متر بر ثانیه و کم‌ترین مقدار این ضریب برابر با 1.18 برای زاویه قرارگیری هدف 90 درجه، فاصله پاشش 2 متر و سرعت باد 2.5 متر برثانیه به‌دست‌آمده است. مدل ریاضی ارائه‌شده برای پیش‌بینی تغییرات ضریب یکنواختی پاشش و درصد سطح پاشش از دقت بسیار بالایی برخوردار می‌باشد. ضریب یکنواختی پاشش با افزایش سرعت باد و فاصله پاشش افزایش یافته است (p<0.01). در محدوده فاصله پاشش 2، 4 و 2 الی 4 متری، با افزایش زاویه پاشش مقدار سطح پاشش به‌طور معنی‌داری افزایش یافته است (p<0.05). شرایط بهینه برای عملکرد کلاهک الکترودینامیکی ساخته‌شده در سرعت هوای 3.5 متربرثانیه، فاصله پاشش 2.58 متر و زاویه پاشش 90 درجه با مطلوبیت 0.792 به‌دست آمد.

کلیدواژه‌ها

موضوعات

©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Ahmad, F., Khaliq, A., Qiu, B., & Sultan, M. (2021). Advancements of spraying technology in agriculture. In book: Technology in Agriculture (pp.19). Publisher: IntechOpen Limited, London, UK. https://doi.org/10.5772/intechopen.98500
  2. Amirshaghaghi, F., & Safari, M. (2016). Comparison and technical evaluation of electrostatic, micronair and tractor mounted lance sprayers in order to control (Carpocasa pomonella ) in apple orchards. Journal of Agricultural Machinery, 6(2), 376-383. (in Persian with English abstract). https://doi.org/10.22067/jam.v6i2.36084
  3. Asaei, H., Jafari, A., & Loghavi, M. (2016). Development and evaluation of a targeted orchard sprayer using machine vision technology. Journal of Agricultural Machinery, 6(2), 362-375. (in Persian with English abstract). https://doi.org/10.22067/jam.v6i2.37220
  4. Bayvel, L. P., & Orzechowski, Z. (1993). Liquid atomization. Taylor & Francis, Washington, DC.462P.
  5. Behzadi Pour, F., Ghasemi Nejad Raeeni, M., Asoodar, M. A., Marzban, A., & Abdanan Mehdizadeh, S. (2017). Study of the operational parameters of crops turbine sprayer (turbo liner) on spray quality and diameter of droplets, using image processing. Journal of Agricultural Machinery, 7(1), 61-72. (in Persian with English abstract). https://doi.org/10.22067/jam.v7i1.48194
  6. Cunha, M., Carvalho, C., & Marcal, A. R. S. (2012). Assessing the ability of image processing software to analysis spray quality on water-sensitive papers used as artificial targets. Biosystems Engineering, 3(1), 11-23. https://doi.org/10.1016/j.biosystemseng.2011.10.002
  7. Derringer, G., & Suich, R. (1980) (Published online: 22 Feb 2018). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214-219. https://doi.org/10.1080/00224065.1980.11980968 (accessed 30-01, 2023).
  8. Farooq, M., Walker, T. W., Heintschel, B. P., & English, T. (2010). Impact of electrostatic and conventional sprayers characteristics on dispersion of barrier spray. Journal of the American Mosquito Control Association, 26(4), 422-429. https://doi.org/10.2987/09-5891.1
  9. Ferguson, J. C., O’Donnell, Ch. C., Chauhan, B. S., Adkins, S. W., Kruger, G. R., Wang, R., Ferreira, P. H. U., & Hewitt, A. J. (2015). Determining the uniformity and consistency of droplet size across spray drift reducing nozzles in a wind tunnel. Crop Protection, 76, 1-6. https://doi.org/10.1016/j.cropro.2015.06.008
  10. Haji Agha Alizadeh, H., Pourvosoughi Gregari, H., & Bakhtiari, A. A. (2018). Evaluation of the functional factors of electrostatic spraying on the top and back surfaces of leaves, using image processing.Iranian Journal of Biosystem Engineering, 47(1), 39-49. https://doi.org/10.22059/ijbse.2016.58476
  11. Halliday, D., Resnick, R., & Walker, J. (2010). Fundamentals of Physics, 9th Edition, 1136P.
  12. Hoffmann, W. C., & Hewitt, A. J. (2005). Comparison of three imaging systems for water sensitive papers. American Society of Agricultural Engineers, 21(6), 961-964. https://doi.org/10.13031/2013.20026
  13. Harrington, E. C. (1965). The Desirability Function. Industrial Quality Control, 21, 494-498.
  14. Indu Baghel, A. S., Bhardwaj, A., & Ibrahim, W. (2022). Optimization of pesticides spray on crops in agriculture using machine learning. Computational Intelligence and Neuroscience, Article ID 9408535, 10 pages. https://doi.org/10.1155/2022/9408535
  15. Jahannama, M. R., & Salehi, H. (2011). Patterns of spray attraction and deposition due to electrical charging. Sharif Mechanical Engineering Journal, 3-27(1), 3-14. (in Persian with English abstract).
  16. Kathleen, M., Carley, N., Kamneva, Y., & Reminga, J. (2004). Response surface methodology. CASOS. Technical Report. CMU-ISRI-04, 136P.
  17. Kumar Narang, M., Mishra, A., Kumar, V., Singh Thakur, S., & Singh, M. (2015). Comparative evaluation of spraying technology in cotton belt of Punjab (India). Journal of Agricultural Engineering, 1, 61-71.
  18. Matthews, G., Bateman, A., & Miller, P. (2014). Pesticide Application Methods, 4th John Wiley and Sons, Ltd. 536 P.
  19. Mahmoudi, F., Heidarbeigi, K., & Azizpanah, A. (2019). Evaluation of the effect of pressure and wind speed on the amount of drift through the image processing method. Iranian Journal of Biosystem Engineering, 50, 213-221. (in Persian with English abstract). https://doi.org/10.22059/ijbse.2018.262469.665076
  20. Mozafari, M. (2010). Technical and economic investigation and comparison of the performance of sprayers with different mechanisms and their effect on onion thrips control. Agricultural Engineering Research Institute, Karaj, Iran. 46P. (In Persian).
  21. McNearney, E. J., & Hons, B. E. (2020). Analysis of droplet-target interactions in electrostatically charged spraying systems. A Thesis of Master of Engineering, in Electrical and Electronic Engineering, University of Canterbury, Christchurch, New Zealand. 94 P.
  22. Mishra, P. K., Singh, M., Sharma, A., Sharma, K., & Singh, B. (2014). Studies on effect of electrostatic spraying in orchards. Agricultural Engineering International, CIGR Journal, 16(3), 60-69.
  23. Mostafaei Minagh, B., Ghobadian, B., & Jahannama, M. R. (2008). Design and development of a greenhouse electrostatic sprayer and evaluation. Journal of Agricultural Science, 18(1), 229-242. (in Persian with English abstract).
  24. Mousavi, A. M., & Baradaran Motie, J. (2021).Design of an electrostatic attachment set for use in drone sprayers. 13th National Congress on Biosystems Engineering and Agricultural Mechanization, Tehran, Iran.
  25. Patel, M. K. (2016). Technological improvements in electrostatic spraying and its impact to agriculture during the last decade and future research perspectives– A review. Engineering in Agriculture, Environment and Food, 9(1), 92-100. https://doi.org/10.1016/j.eaef.2015.09.006
  26. Moltó, E., Chueca, P., Garcerá, C., Balsari, P., Gil, E., & van de Zande, J. C. (2017). Engineering approaches for reducing spray drift. Biosystems Engineering, 154, 1-2. https://doi.org/10.1016/j.biosystemseng.2017.01.002
  27. Sasaki, S. R., Teixeira, M. M., Fernandes, H. C., Monterio, P. M. B., Rodrigues, D. E., & Alvarenga, C. B. (2012). Effect of space on droplets electrical charge during electrostatic spraying. International Conference of Agricultural Engineering- CIGR-AgEng: agriculture and engineering for a healthier life, Valencia, Spain, 8-12 July 2012.
  28. Sayınci, B., Bastaban, S., & Sánchez-Hermosilla, J. (2012). Determination of optimal spot roundness variation interval for droplet size analysis on water sensitive paper. Journal of Agricultural Science and Technology, 14, 285-298. https://dorl.net/dor/20.1001.1.16807073.2012.14.2.11.3
  29. Witek-Krowiak, A., Chojnacka, K., Podstawczyk, D., Dawiec, A., & Pokomeda, K. (2014). Application of response surface methodology and artificial neural network methods in modeling and optimization of biosorption process. Bioresource Technology, 160, 150-160. https://doi.org/1016/j.biortech.2014.01.021
  30. Yang, Z., Niu, M., Li, J., Xu, X., Xu, J., & Chen, Z. (2015). Design and experiment of an electrostatic sprayer with online mixing system for orchard. Transactions of the Chinese Society of Agricultural Engineering, 31, 60-67. https://doi/org/10.11975/j.issn.1002-6819.2015.21.008
  31. Zhang, Y. L., Lian, Q., & Zhang, W. (2017). Design and test of a six-rotor unmanned aerial vehicle (UAV) electrostatic spraying system for crop protection. International Journal of Agricultural and Biological Engineering, 10, 68-76. https://doi.org/10.25165/j.ijabe.20171006.3460
  32. Zhao, S., Castle, G. S. P., & Adamiak, K. (2008). Factors affecting deposition in electrostatic pesticide spraying. Journal of Electrostatics, 66(11-12), 594-601. https://doi.org/10.1016/j.elstat.2008.06.009
CAPTCHA Image