Modeling
S. Karimi Avargani; A. Maleki; Sh. Besharati; R. Ebrahimi
Abstract
The main objective of this paper is to develop a seven-link dynamic model of the operator’s body while working with a motorized backpack sprayer. This model includes the coordinates of the sprayer relative to the body, the rotational inertia of the sprayer, the muscle moments acting on the joints, ...
Read More
The main objective of this paper is to develop a seven-link dynamic model of the operator’s body while working with a motorized backpack sprayer. This model includes the coordinates of the sprayer relative to the body, the rotational inertia of the sprayer, the muscle moments acting on the joints, and a kinematic coupling that keeps the body balanced between the two legs. The constraint functions were determined and the non-linear differential equations of motion were derived using Lagrangian equations. The results show that undesirable fluctuations in the ankle force are noticeable at the beginning and end of a swing phase. Therefore, injuries to the ankle joint are more likely due to vibrations. The effects of engine speed and sprayer mass on the hip and ankle joint forces were then investigated. It is found that the engine speed and sprayer mass have significant effects on the hip and ankle forces and can be used as effective control parameters. The results of the analysis also show that increasing the engine speed increases the frequency of the hip joint force. However, no significant effects on the frequency of the ankle joint force are observed. The results of this study may provide researchers with insight into estimating the allowable working hours with the motorized backpack sprayers, prosthesis design, and load calculations of hip implants in the future.