Precision Farming
M. Safaeinejad; M. Ghasemi-Nejad Raeini; M. Taki
Abstract
IntroductionOne of the key structural factors in agricultural mechanization is the selection of appropriate technology. Today, examining the effects of technology application and development on agricultural production remains of highly importance. Innovative technologies, such as spraying drones, play ...
Read More
IntroductionOne of the key structural factors in agricultural mechanization is the selection of appropriate technology. Today, examining the effects of technology application and development on agricultural production remains of highly importance. Innovative technologies, such as spraying drones, play a critical role in advancing agriculture and ensuring food security. Without these technologies and proper input management, environmental impacts are likely to intensify. Achieving sustainable production and ensuring food security is a major challenge for researchers and global policymakers. This study evaluates and compares the performance of spraying drones and boom sprayers in controlling weeds and yellow rust disease in wheat fields. The aim of this study is to optimize pesticide use and achieve sustainable agriculture.Materials and MethodsThis research was conducted to evaluate the field performance and economic feasibility of using spraying drones compared to boom sprayers for controlling weeds and yellow rust disease in wheat fields. Experiments were carried out in regional Khorramabad, Iran, using a DJI Agras MG-1P spraying drone and a 400-liter 400B8 TF boom sprayer. The aim was to investigate the impact of modern technology, specifically spraying drones, compared to traditional methods, such as boom sprayers, for managing weeds and yellow rust disease. Additionally, the study assessed the profitability of these technologies. The experiments followed a randomized complete block design with three treatments: boom sprayer, spraying drone, and control. They were conducted in two separate, independent fields to examine treatment effects on weeds and yellow rust in wheat. For weeds control, 2-4-D herbicide was applied at 1.5 L ha-1, and for yellow rust control, Tilt fungicide was used at 0.5 L ha-1.Results and DiscussionResults showed that the deposition rate of pesticides in boom sprayers (82.8%) was higher than with drone spraying (69.9%). Furthermore, the average dry weight of weeds in boom sprayer was 172 g m-2, and in drone spraying, it was 163 g m-2, which was not statistically significant. Additionally, the average weed density was 25 plants per square meter for boom sprayers and 29.3 plants per square meter for drone spraying, with no statistically significant difference. The average harvest index in weed control experiments was 44% for boom sprayer and 41% for drone spraying, which was statistically significant at the 1% level. The average severity of yellow rust infection in wheat fields was 30.7% for boom sprayer and 25.3% for drone spraying, which was not statistically significant at the 1% level, but both treatments were significantly different from the control (68.3%). The harvest index in yellow rust experiments was better in drone spraying (43.8%) compared to boom sprayer (41.9%). The total annual cost for drone owners in the studied region (2980.3 million rials) was higher than the total cost for boom sprayer owners (513.48 million rials). However, the benefit-cost ratio for drone owners (1.215) exceeded that of boom sprayer owners (1.030), demonstrating economic viability for both sprayers. Overall, drones are found to be more economical for spraying than boom sprayers due to their higher efficiency and profitability. The use of drones can significantly increase the efficiency and profitability of spraying operations.ConclusionThe results of this study showed that both drone and boom sprayer were effective in reducing the dry weight of weeds, but there was no statistically significant difference between them. Weed density was higher with drone spraying, and the harvest index was better with drone spraying compared to boom sprayer. The costs of using drones were higher than boom sprayers, but despite the higher costs, drones are superior option for spraying due to their increased efficiency and profitability.
Bioenergy
M. Soleymani; A. Asakereh; M. Safaeinejad
Abstract
Optimal use of resources, including energy, is one of the most important principles in modern and sustainable agricultural systems. Exergy analysis and life cycle assessment were used to study the efficient use of inputs, energy consumption reduction, and various environmental effects in the corn production ...
Read More
Optimal use of resources, including energy, is one of the most important principles in modern and sustainable agricultural systems. Exergy analysis and life cycle assessment were used to study the efficient use of inputs, energy consumption reduction, and various environmental effects in the corn production system in Lorestan province, Iran. The required data were collected from farmers in Lorestan province using random sampling. The Cobb-Douglas equation and data envelopment analysis were utilized for modeling and optimizing cumulative energy and exergy consumption (CEnC and CExC) and devising strategies to mitigate the environmental impacts of corn production. The Cobb-Douglas equation results revealed that electricity, diesel fuel, and N-fertilizer were the major contributors to CExC in the corn production system. According to the Data Envelopment Analysis (DEA) results, the average efficiency of all farms in terms of CExC was 94.7% in the CCR model and 97.8% in the BCC model. Furthermore, the results indicated that there was excessive consumption of inputs, particularly potassium and phosphate fertilizers. By adopting more suitable methods based on DEA of efficient farmers, it was possible to save 6.47, 10.42, 7.40, 13.32, 31.29, 3.25, and 6.78% in the exergy consumption of diesel fuel, electricity, machinery, chemical fertilizers, biocides, seeds, and irrigation, respectively.