The relationship between machine and soil
N. Farhadi; A. Mardani; A. Hosainpour; B. Golanbari
Abstract
Introduction The formation of ruts induced by vehicle traffic poses a significant challenge for agricultural soils due to soil compaction both at the surface and deeper layers. This phenomenon compromises vehicle performance increases energy consumption, and leads to long-term environmental degradation, ...
Read More
Introduction The formation of ruts induced by vehicle traffic poses a significant challenge for agricultural soils due to soil compaction both at the surface and deeper layers. This phenomenon compromises vehicle performance increases energy consumption, and leads to long-term environmental degradation, such as soil erosion and fertility reduction. To enhance vehicle performance and reduce soil damage, it is crucial to accurately predict how factors such as vehicle speed, vertical load, and the number of passes impact rut depth. The findings of this study hold significant practical implications, facilitating the development for the creation of more efficient agricultural practices, while simultaneously minimizing environmental impact. The complexity of these interactions necessitates using machine learning models, especially artificial neural networks (ANNs), to predict rut depth based on input parameters. In this study, two machine learning models, namely the multilayer perceptron (MLP) and the radial basis function (RBF) networks, were employed to predict rut depth.Materials and MethodsExperiments were conducted using a soil bin that allows for precise control of independent parameters, measuring 24 meters in length, 2 meters in width, and 0.8 meters in depth. The soil used was agricultural soil, comprising 35% sand, 22% silt, and 43% clay, with a moisture content of 8%. The tests included three independent parameters: vertical load (2, 3, and 4 kN), forward speed (1, 2, and 3 km h-1), and number of wheel passes (up to 15). Two types of traction devices, including a rubber wheel and a track wheel, were tested. A caliper was used to measure the rut depth after each pass with an accuracy of 0.02 mm. The data collected from soil bin tests were used to train neural network models in MATLAB 2021-b software. The MLP model had a topology with two hidden layers and included three inputs and one output. In the RBF model, the network topology had a single hidden layer. The trial-and-error method was used to adjust the hyperparameters of the neural networks, including the number of neurons in the hidden layers, the learning rate, and momentum for the MLP network, as well as the spread rate and regularization rate for the RBF network.Results and DiscussionExperimental data confirmed that increasing the vertical load and the number of passes resulted in deeper ruts. Conversely, an increase in speed led to a reduction in rut depth, particularly during the initial pass. Both artificial neural network (ANN) models accurately predicted rut depth, with the multilayer perceptron (MLP) neural network outperforming the radial basis function (RBF) neural network. Specifically, the root mean square error (RMSE) for the optimal MLP model, which utilized a learning rate of 0.001 and a momentum of 0.67, was 0.10. In contrast, the optimal RBF model, with an expansion rate of 0.23456, yielded an RMSE of 0.12. The findings indicate that the MLP artificial neural network model surpasses the RBF neural network model in terms of accuracy and overall performance. However, the RBF neural network exhibits a faster response time, making it particularly suitable for real-time applications.ConclusionThis study demonstrates the efficacy of machine learning techniques, particularly artificial neural networks (ANNs), in predicting rut depth caused by off-road vehicle traffic. Both multilayer perceptron (MLP) and radial basis function (RBF) neural networks exhibited robust predictive capabilities, with the MLP model providing slightly superior accuracy and the RBF model offering better computational efficiency. These findings highlight the potential of machine learning in modeling complex interactions between soil and vehicles, which can enhance vehicle performance, mitigate soil erosion, and guide the design of off-road vehicles. Future research directions could include investigating additional soil parameters, various vehicle configurations, and the real-world implementation of autonomous off-road vehicles to promote more environmentally sustainable operations.
The relationship between machine and soil
B. Golanbari; A. Mardani; A. Hosainpour; H. Taghavifar
Abstract
Due to the numerous variables that may influence the soil-machine interaction systems, predicting the mechanical response of soil interacting with off-road traction equipment is challenging. In this study, deep neural networks (DNNs) are chosen as a potential solution for explaining the varying soil ...
Read More
Due to the numerous variables that may influence the soil-machine interaction systems, predicting the mechanical response of soil interacting with off-road traction equipment is challenging. In this study, deep neural networks (DNNs) are chosen as a potential solution for explaining the varying soil sinkage rates because of their ability to model complex, multivariate, and dynamic systems. Plate sinkage tests were carried out using a Bevameter in a fixed-type soil bin with a 24 m length, 2 m width, and 1 m depth. Experimental tests were conducted at three sinkage rates for two plate sizes, with a soil water content of 10%. The provided empirical data on the soil pressure-sinkage relationship served as the basis for an algorithm capable of discerning the soil-machine interaction. From the iterative process, it was determined that a DNN, specifically a feed-forward back-propagation DNN with three hidden layers, is the optimal choice. The optimized DNN architecture is structured as 3-8-15-10-1, as determined by the Grey Wolf Optimization algorithm. While the Bekker equation had traditionally been employed as a widely accepted method for predicting soil pressure-sinkage behavior, it typically disregarded the influence of sinkage velocity of the soil. However, the findings revealed the significant impact of sinkage velocity on the parameters governing the soil deformation response. The trained DNN successfully incorporated the sinkage velocity into its structure and provided accurate results with an MSE value of 0.0871.
M. Eskandari; A. Hosainpour
Abstract
Many research projects have been conducted about using ultrasonic sensors to estimate canopy volume. This study investigates using software applications such as artificial neural network (ANN) to improve the estimation of canopy volume by using ultrasonic sensors. A special experimental system was built. ...
Read More
Many research projects have been conducted about using ultrasonic sensors to estimate canopy volume. This study investigates using software applications such as artificial neural network (ANN) to improve the estimation of canopy volume by using ultrasonic sensors. A special experimental system was built. The system had three ultrasonic sensors mounted vertically on a wooden pole with an equal distance of 0.6 m. As the wooden pole moves with a constant speed, the ultrasonic sensors measure the thickness of tree canopy with sampling rate of 4 Hz. Experiments were conducted on 5 samples of Benjamin tree at three speed levels of 35,45 and 55 cm s-1 in three replications. The real volume of trees was measured manually with rectangular elements method. After a full passing of ultrasonic sensors, potential features such as canopy diameter, average width of tree canopy and height of the tree canopy were considered as the inputs to the ANN model and the manually volume as the output of the model. Optimal ANN model was selected based on mean square error and correlation coefficient. The results showed that 13-16-7-1 was the optimal neuron numbers in ANN topology for estimating canopy volume.