Design and Construction
P. Ghiasi; M. Salatin; R. Soon; S. M. Mir Esmaeili; K. Pirvandi; Gh. Najafi
Abstract
IntroductionThe world today is facing the issue of population growth, which will result in food shortages. One way to supply food to this growing population is to facilitate the production of agricultural products to meet the growing demand. Medicinal plants are an important product of the agricultural ...
Read More
IntroductionThe world today is facing the issue of population growth, which will result in food shortages. One way to supply food to this growing population is to facilitate the production of agricultural products to meet the growing demand. Medicinal plants are an important product of the agricultural sector. In Iran, manual harvesting reduces the productivity of these crops, and the use of manual harvesting poses challenges related to available manpower. The costs and time required for manual harvesting are additional obstacles. Given the importance of developing medicinal plants, designing and constructing a mechanized machine for harvesting them could improve the harvesting process.Material and MethodsIn designing the machine for harvesting medicinal plants in cultivation rows, different scenarios were examined regarding the position of the machine relative to the tractor. The advantages and disadvantages of each scenario were listed separately, and finally, the continuous placement of tractors, harvesters, and trailers was defined. One of the goals of designing this machine is to perform harvesting operations for two row spacing’s - 80 and 160 cm. To achieve this goal, mechanisms were added to the machine that allow for changing the position of the harvesting head, as well as the cutting height. Moreover, due to the sensitivity of the harvested product to soil contact, the plants should be transferred immediately after cutting. Therefore, a transfer mechanism was designed and built to move the cut products to the trailer. Independent variables, including forward speed at two levels, type of reel in two types, and cutting blade in two types, were considered. Dependent variables also included harvesting efficiency, percentage of damaged plants, and harvesting capacity.Results and DiscussionThe results of variance analysis for different treatments show that the forward speed, type of reel, and cutting blade type have an effect on harvest efficiency. The difference in harvest efficiency is significant at a 1% probability level. A star cutting blade provides higher efficiency than a 40-teeth cutting blade. The rubber reel prevents plants from falling to the ground by creating a closed space in front of the blade. However, the inner parts of the rods reel are empty, and the plant can fall to the ground. Additionally, the plant may get wrapped around the rods, causing a decrease in harvesting efficiency. Another essential parameter when identifying and evaluating a harvesting machine is crop damage. Some plants get crushed and torn due to the impact on metal components. This situation reduces the quality of the harvested product, leading to a decline in the final product's price. The star-cutting blade causes more leaf rupture. In contrast, the teeth in the 40-teeth blade are continuous, making it unlikely for the leaf to get caught between the two teeth. However, with the star blade, the distance between the two blades is large, allowing the plant to get stuck in between and re-cut.ConclusionBased on tests conducted for eight different positions of the harvester, it was observed that the G test outperformed the other tests with 85.88% harvesting efficiency, a capacity of 344.8 kg h-1, and only 1.34% peppermint leaf damage. Therefore, for harvesting similar peppermint products, we recommend using a combination of a star blade, rubber carousel, and a forward speed of 1.2 meters per second. However, new tests should be conducted on other products like lavender and those with strong stems.
E. Biabani Agdam; M. H. Khoshtaghaza; Gh. Najafi
Abstract
IntroductionOne of the most important and sensitive steps after walnut harvesting is the separation of the kernel from its shell. Walnut rupture force is an appropriate criterion for design with high performance and better quality, which can be used as the basis for designing and adjusting the various ...
Read More
IntroductionOne of the most important and sensitive steps after walnut harvesting is the separation of the kernel from its shell. Walnut rupture force is an appropriate criterion for design with high performance and better quality, which can be used as the basis for designing and adjusting the various parts of machines that are in contact with walnut. The lower rupture force caused the less energy requirement to separate the walnut kernel from the shell. The use of ultrasound in ambient fluids is well known to cause turbulence and biological cell rupture. These effects arise principally from the phenomenon known as cavitation which can scour surfaces and damage cellular material. Therefore the object of this study is to find the effect of ultrasound factors on the amount of walnut rupture force and quality of kernel extraction.Materials and MethodsWalnut paper variety was selected from a Qazvin province orchard for this study. To determine the initial moisture content of the nuts, the samples were dried in an oven at 105°C for 24 h. Initial moisture content was found 5.5 (%w.b). The ultrasounds bath system (D-78224 Singen/htw, Elma, Germany) was used with a nominal frequency of 50 kHz and power of 1000 W. In this research, based on the pretest results and previous studies (Cao et al., 2010; Entezari et al., 2004) walnut samples were treated with three ultrasound time duration (5, 10 and 15 min) and three ultrasound bath temperature (20, 35, and 50ºC). Moisture content of the walnuts after ultrasound treatment was 8.8 (%w.b). After the walnut samples were treated by ultrasonic factors, a material testing machine (H50 K-S, Hounsfield, England) was used to determine the rupture force of the walnuts. The walnut was placed between two plates, and loaded at three loading speeds (0.5, 1.5, and 2.5 mm s-1) and pressed until the walnut ruptured. Rupture force was applied along with X and Y axes. The X-axis was in the longitudinal axis through the hilum to the tip (length) and the Y-axis was in the latitudinal axis (width) at right angles to the X-axis. Kernel extraction quality was classified into grades according to size and number of broken pieces of the kernel. Central composite design (CCD) of resound surface method was used to optimize the effect of ultrasonic factors on walnut kernel extraction.Results and DiscussionThe results indicated that the loading speed, ultrasound time duration, loading direction, and moisture content had a highly significant effect (P<0.01) and ultrasound bath temperature (P<0.05) on the rupture force and kernel extracting quality. Regarding the sum of squares of ANOVA results, the ultrasound time duration factor had the most effect on the rupture force and the loading direction factor had the most effect on kernel extraction quality. By increasing bath temperature and ultrasound time duration, walnut rupture force was decreased. The minimum walnut rupture force was obtained in 25 min ultrasound time duration, 50ºC bath temperature, 1.5 mm s-1 loading speed, and width loading direction for wet walnut. By increasing bath temperature, walnut kernel losses were increased. The best kernel extraction quality was obtained in 2.5 mm s-1 loading speed, 25 min ultrasound duration, 20ºC bath temperature, and longitudinal loading direction. The proposed optimal point was obtained at 64.4 N rupture force, and two half of the kernel at 1.3 mm s-1 loading speed, 25 min ultrasound duration, 50ºC bath temperature, and longitudinal loading direction for wet walnut.ConclusionThe walnut ultrasound treated samples had minimum rupture force and the best quality kernel extraction. It was observed that by increasing the loading speed and ultrasound time duration, the percentage of whole kernels and the quality degree of broken kernels increased.
E. Rahmati; F. Sharifian; M. Fattahi; Gh. Najafi
Abstract
Introduction Dracocephalum moldavica L. is an annual plant with blue or white flowers and fragrant leaves which belongs to the family of Lamiaceae with the height of up to 80 cm. This plant is native to Central Asia and is accepted in Central and Eastern Europe. In Iran, it is mainly grown in the province ...
Read More
Introduction Dracocephalum moldavica L. is an annual plant with blue or white flowers and fragrant leaves which belongs to the family of Lamiaceae with the height of up to 80 cm. This plant is native to Central Asia and is accepted in Central and Eastern Europe. In Iran, it is mainly grown in the province of West Azarbaijan and the Alborz Mountains. The essential oils and extracts derived from the secondary metabolisms which are mainly used in the pharmaceutical industry, dietary, cosmetic, flavoring and also as tea and beverage with sugar or honey. The liquid extract of the herb contains a high percentage of water, which should evaporate to increase shelf-life, easy transport, handling and storage, the ease of standardization and preservation of the product quality. On the other hand, the active compounds of the extracts are affected by temperature, oxygen, light and enzymes. Therefore, because of the uses and benefits of herbal extracts, they need to be dried by a practical and effective method like spray drying. In literature still there are no studies taking into account to the comparisons between RSM and TOPSIS as two important optimization methods. So, as the main objective of the present work, the effects of moisture content, drying performance, total phenol content, total flavonoid content and antioxidant activity have been surveyed. Finally, the optimal point of each process variable was presented by two optimization methods. Materials and Methods Aerial parts of Moldavian balm plant were cleaned and drying of plant was carried out under shade and thin layer conditions. The extraction of Moldavian balm was obtained by maceration method using ethanol 50 % (v/v), plant to solvent ratio of 1/10 (w/v). After 48h, the extract was concentrated in a rotary evaporator (Buchi Rotavapor R-205, Switzerland) to obtain a solid concentration of 6%. The used carrier was: Maltodextrin and apple pectin. Different ratios of carrier were prepared, then the ratio was added to distilled water and stirred by a magnetic stirrer. Finally, the solution was mixed with extract. The drying of Moldavian Balm plant extract was performed using a spray-dryer (Büchi B-191, Switzerland) with co-current flow regime. The powders provided by the spray drying were stored in refrigerator until they were needed for the experiment. Results and Discussion The results of variance analysis showed that the Box-Behnken design with the second-order model has led to the meaningfulness of the model, insignificant of the Lack of Fit and the appropriate correlation coefficient for each of the responses. A total number of 15 experiments were conducted to investigate the effect of process variables such as inlet air temperature, compressed air flow rate and concentration of carriers on moisture content, drying performance, total phenolic content, total flavonoid content and antioxidant activity of Moldavian balm powder. Inlet air temperature and compressed air flow rate had the most significant effect on moisture content and drying performance, while Chemical properties of the powder affected by changing the concentration of carriers. Optimization parameters of the spray drying process was performed using surface response and TOPSIS methods. The optimum predicted conditions in the response surface method and TOPSIS method were obtained at inlet air temperature, compressed air flow rate and concentration of carrier (152.5-150°C), (8.046-7.5 lit min-1) and 20%, respectively. Conclusion By comparing two methods, it can be concluded that although they could provide the same optimum points, the RSM is more efficient. Because RSM offers a mathematical model that can be used at any desired point of variables to predict the output quantities as well as describing the process trend, while TOPSIS method is unable to predict the process trend and only provides the ranking of alternatives.
P. Ghiasi; A. Masoumi; A. Hemmat; Gh. Najafi
Abstract
Harvesting is one of the most important field operations in sunflower production. Seed damage and low separation efficiency are the top concerns of harvesting sunflower. In this study, a threshing cylinder with rubber teeth and a concave for harvesting sunflower were designed and evaluated. The variable ...
Read More
Harvesting is one of the most important field operations in sunflower production. Seed damage and low separation efficiency are the top concerns of harvesting sunflower. In this study, a threshing cylinder with rubber teeth and a concave for harvesting sunflower were designed and evaluated. The variable parameters were threshing cylinder speed (TCS), threshing space (TS) and moisture content (MC) of sunflower head. Azargol variety was used to evaluate the threshing unit. The tests were performed at three cylinder speed levels (280, 380 and 480 rpm), two threshing spaces (8 and 10 cm) and two moisture content of sunflower head based on the crop condition (20% and 45% wet basis). An ANN model was developed to predict the amount of materials in each part of the concave. Results showed that the sunflower seeds had no damage during the threshing process and the presented model could predict the amount of materials in each part of the concave with a regression coefficient R2=0.95. Based on the ANN model, with a decrease in MC and TS, and an increase in TCS, the separation efficiency was increased. Furthermore, optimal parameters for the threshing unit which were suggested by Design Expert software to maximize the separation efficiency were 18% w.b, 450 rpm and 10.5 cm for MC, TSC, and TS, respectively and in this condition separation efficiency was determined to be 94.92%.
N. Keramat Siavash; Gh. Najafi; S. R. Hassan Beigi Bidgoli; B. Ghobadian
Abstract
Introduction: There are several sources of noise in an industrial and agriculture environment. Machines with rotating or reciprocating engines are sound-producing sources. Also, the audio signal can be analyzed to discover how well a machine operates. Diesel engines complex noise SPL and sound frequency ...
Read More
Introduction: There are several sources of noise in an industrial and agriculture environment. Machines with rotating or reciprocating engines are sound-producing sources. Also, the audio signal can be analyzed to discover how well a machine operates. Diesel engines complex noise SPL and sound frequency content both strongly depend on fuel combustion, which produces the so-called combustion noise. Actually, the unpleasant sound signature of diesel engines is due to the harsh and irregular self-ignition of the fuel. Therefore, being able to extract combustion noise from the overall noise would be of prime interest. This would allow engineers to relate the sound quality back to the combustion parameters. The residual noise produced by various sources, is referred to as mechanical noise. Since diesel engine noise radiation is associated with the operators’ and pedestrians’ discomfort, more and more attention to being paid to it. The main sources of noise generation in a diesel engine are exhaust system, mechanical processes such as valve train and combustion that prevail over the other two. In the present work, experimental tests were conducted on a single cylinder diesel engine in order to investigate the combustion noise radiation during stationary state for various diesel and biodiesel fuel blends.
Materials and Methods: The engine used in the current study is an ASHTAD DF120-RA70 that is a single cylinder 4 stroke water cooled diesel engine and its nominal power is 7.5 hp at 2200 rpm. The experiment has been done at three positions (Left ear of operator, 1.5 and 7.5 meter away from exhaust) based on ISO-5131 and SAE-J1174 standards. For engine speed measurement the detector Lurton 2364 was utilized with a measurement accuracy of 0.001 rpm. To obtain the highest accuracy, contact mode of detector was used. The engine noise was measured by HT157 sound level meter and was digitalized and saved with Sound View software. HT157 uses alow impedance, capacitor microphone with a unidirectional pattern whose size, sensitivity and frequency range are 1/2", 50 mV Pa-1 and 10 Hz to 20 kHz with a flat extrusion, respectively. Choosing the combination of fuel was carried out according to experiments that have been done before determining engine operation parameters.
Results and Discussion: Fuel type has a direct effect on the quality of the IC engine's combustion phenomenon. One of the most important quality parameters that can be fluctuated by fuel type is engine noise. The fuel type has a direct effect on internal fuel ignition engines and affects the quality of fuel ignition. One of the effects of ignition quality is the sound of the engine that is very important in terms of both the health and evaluation of engine performance. Two-wheel tractors are of the most important tools used in agriculture. In addition to agricultural work, they have applications in rural areas as power generators. No research has been carried out so far in Iran on the sound of two-wheel tractors fuelled with diesel and biodiesel fuels. Therefore, the sound of the ignition of biodiesel and diesel mixtures in four stroke, single cylinder, two wheel diesel tractors manufactured by Ashtad Company was studied. The purpose of this study is to analyze the noise parameters of a diesel engine using B0, B5, B10, B15, B20, B25 and B30 biodiesel–diesel blends. Biodiesel was produced from waste oil and blended with net diesel fuel to evaluate the Power tiller's engine noise parameters. This study was carried out at a stationary position and at three positions such as driver's left ear position (DLEP), 1.5 meter (1.5 MAFE) and 7.5 meters (7.5 MAFE) away from the exhaust at 6 engine speeds (1200, 1400, 1600, 1800, 2000 & 2200 rpm). Statistical analysis and frequency analysis were used to analyze sound of the engine. The results showed that the sound pressure levels of the engine for B10 fuel have the least amount of noise level of the sound pressure. However, this fuel has no significant difference at 1% level with B00, B05 and B15 fuel. At the A weight level, that matches the structure of the human ear, and there is no difference between the sound pressure levels of ignition. Sound pressure level increased with increasing engine speed and the difference is significant at the 1% level. With increasing speed engine, noise levels increased up to 7.8 dB. Average sound pressure level was 83.76 dB at the driver's ear position (79.3 dBA), at 1.5 meters away from exhaust it was 85 dB (80.9 dBA) and at 7.5 meters away from exhaust it was 79.5 dB (72.4 dBA). The results proved that the lowest and highest sound pressure levels (SPL) of power tiller take place at B10, and B30, respectively. The SPL increased by 7.8 dB for increasing engine speed from 1200 to 2200 rpm. The test results showed that the average SPL at DLEP was 4.3 dB higher than 7.5 MAFE position.
Conclusions: B10 has minimum sound pressure level (SPL), but its difference with B00 (DIESEL FUEL), B05 and B15 is not significant in 1% error level. Considering the NOISH standard, the operator can work with a machine for 8 hours. In DLPE position, the most overcome frequency is 315 Hz for all blends that resulted from exhaustion and combustion. B10 has a minimum SPL at this peak point significantly lower than other blends. For the used engine in this experiment, by optimizing muffler design it is possible to reduce SPL of engine in this frequency peak point