Modeling
E. Aghaei Badelbou; V. Rostampour; A. Rezvanivand fanaei; A. M. Nikbakht
Abstract
IntroductionCyclone separators use the centrifugal force generated by the gas flow stream to separate the particles from their carrier gas. Simple design, low capital, and easy maintenance make them ideal for use as a valuable pre-refining or sedimentation device. The cause of the particles moving towards ...
Read More
IntroductionCyclone separators use the centrifugal force generated by the gas flow stream to separate the particles from their carrier gas. Simple design, low capital, and easy maintenance make them ideal for use as a valuable pre-refining or sedimentation device. The cause of the particles moving towards the wall and separating from the fluid phase is the centrifugal force created by the rotational flow in a cyclone.Computational fluid dynamics (CFD) is one of the most well-known and widely used advanced modeling methods used for a variety of applications, including separation processes, thermal processes such as dryers, as well as a wide range of engineering and agricultural applications. The numerical solution of Navier-Stokes equations is the basis of all CFD techniques, which is the result of the rapid progress of computers and a deep understanding of the numerical solution of turbulence phenomena.Materials and MethodsThe measurement system of experimental data includes a cyclone separator, feeder, piping, and fan. Measurements of velocity and pressure were carried out using a hot wire air flow rate, (Model 8465-TSI with a resolution of 0.07 m.s-1 and a working range of 0.125 to 150 m.s-1), as well as a differential pressure gauge (CPE310s- KIMO, with an accuracy of 0.1 Pa), respectively. To investigate the effect of the output flow regulator plate on the cyclone performance, five different positions in addition to the base position (zero degree angle or fully open) including angles of 15, 30, 45, 60, and 75 degrees were evaluated.The conservation laws governing the various flows and geometries in the CFD include the conservation law of mass, conservation law of momentum, and conservation law of energy.According to the Mach number value, the pressure base solver was selected. Also, the Reynolds stress model (RSM) was applied to model the flow turbulence. In the discrete phase model (DPM), the fluid phase is solved continuously by solving averaged time equations, while the dispersed phase is calculated by tracing a large number of particles through the flow field.The boundary conditions used in this study include the inlet velocity boundary condition at the inlet of the cyclone, the outlet pressure boundary condition in the upper and lower outlet sections, and the non-slip wall boundary condition for other surfaces. The particle collision to the wall was also defined as reflective. In the mesh section of the cyclone simulation, five mesh levels were used to check the mesh independence test. The numbers of mesh cells in the five levels were 196810, 283120, 427890, 634940, and 1045290. The selected mesh was 427890 level regarding time consideration.Results and DiscussionIn the first section, the validation of simulation results with experimental results is discussed. The value of the velocity magnitude decreased with increasing the angle of the plate, which is probably due to the reduction of the inlet level as well as the reduction of the exhaust airflow in the cyclone air outlet.The maximum value of velocity magnitude occurred according to the direction of the air inlet in the cyclone inlet, which is gradually reduced due to the rotational motion inside the cyclone.The collection efficiency in the cyclone at different levels of regulating plate has values of 85.1% to 95.3%, with maximum collection efficiency at 30° which was 95.3%. The turbulent intensity contours show that turbulence intensity decreases to an angle of 30°, and then reaches an almost constant value for the 30, 45, and 60° angles.ConclusionAs the angle of the output current regulator plate increased, the magnitude of velocity decreased significantly.The separation efficiency showed an increasing-decreasing trend for different values of the regulator plate such that up to a 30° angle of the plate had a positive effect on the separation efficiency.In general, considering the compromise between separation efficiency and pressure drop as two key parameters affecting the performance of the cyclone, an angle of 30 degrees was selected as the best angle among the studied angles for application.
Modeling
A. Rezvanivand fanaei; A. Hasanpour; A. M. Nikbakht
Abstract
IntroductionThermo-compressors or ejectors are used to enhance the vapor enthalpy in the process industry. The low costs of construction and maintenance, and simple structure, have increased by using this equipment in relevant fields of industry and agriculture. The thermo-compressor's inlet parameters, ...
Read More
IntroductionThermo-compressors or ejectors are used to enhance the vapor enthalpy in the process industry. The low costs of construction and maintenance, and simple structure, have increased by using this equipment in relevant fields of industry and agriculture. The thermo-compressor's inlet parameters, including the thermodynamic properties of the motive steam and suction vapor, are the foremost affecting factor of a thermo-compressor.The steam used in processing factories loses its capability after passing through evaporators due to the reduction of pressure and temperature, gets cooled again, and returns to the boiler despite having a moderate energy level. Therefore, the use of vapor-recovery equipment can increase the efficiency of energy systems. That will lead to a significant reduction in greenhouse gas emissions and harmful environmental effects, which increase the lifetime of energy resources.Materials and MethodsThe realizable k-ε turbulence model is used to simulate turbulence within the flow. The thermo-compressor geometry has meshed in 2D and 3D modes to apply the conservation laws. For this purpose, quadratic (quad) and hexahedral (hex) types are used for two and three-dimensional meshing, respectively. Structured meshes have a high ability to obtain numerical results due to creation of structural meshes in the flow direction.The axisymmetric structure of the thermo-compressor leads to a half simulation of geometry. The thermodynamic properties of the input flows and their variations in the output, such as pressure, velocity, Mach number, and mass ratios for different motive steam pressure are extracted and discussed.Results and DiscussionDifferent levels of meshes are examined to investigate the mesh-independence test. In axisymmetric two-dimensional analysis, these levels include 33460, 51340, 78620, and 103590 cells, respectively. The relatively insignificant difference in motive flow for the third and fourth mesh levels (which proves less than 5%) clearly shows the independence of the results from the mesh size. Regarding the time considerations, the grid with 78,620 meshes was used in the simulations.The experimental data from the article by Sriveerakul et al. (2007) are used to validate the numerical results of the present work. Validation shows that the results obtained from the simulations are in good agreement with the experimental data. Since the final results of the two-dimensional analysis are very close to the three-dimensional one, the first one is selected due to the time considerations and higher computational costs of the three-dimensional mesh analysis.Considering the problem conditions, pressures of 10 and 15 bars are appropriate for practical application. Since the 15 bar motive stem creates a longer development length in the diffuser section, it is a better choice. At this level (15 bar), the temperature field within the thermo-compressor is well distributed in the presence of ideal temperature conditions. The ideal velocity distribution within the thermo-compressor and the uniformity of the motive and suction flows indicate the high performance of the thermo-compressor in these operating conditions. Applying the motive steam of 15 bars, the values of 0.59 and 0.41 for the motive and suction mass ratios of the diffuser output were achieved, respectively.ConclusionGeometrically, the study was examined in asymmetrical two-dimension and three-dimension. It was observed that there is a slight difference between the two analysis modes by comparing the velocities along the longitudinal line of the thermo-compressor. Therefore, to save computational and time costs, results are presented for the axisymmetric two-dimensional mode.The effect of 4 levels of motive steam pressure on the thermodynamic properties within the computational domain, including pressure, temperature, velocity, Mach number, mass ratios of both motive steam, and suction vapor are evaluated. Finally, the values of the performance curve for steam with motive pressures of 3.7, 5, 10, and 15 bars are presented.
I. Golpour; P. Ahmadi Moghaddam; A. M. Nikbakht
Abstract
IntroductionSteam generation system is a crucial and essential part of food industries which generates and distributes steam for consumption in domestic production units. Energy analysis based on the first law of thermodynamics was employed as the basic approach to assess energy systems. However, the ...
Read More
IntroductionSteam generation system is a crucial and essential part of food industries which generates and distributes steam for consumption in domestic production units. Energy analysis based on the first law of thermodynamics was employed as the basic approach to assess energy systems. However, the energy approach does not provide information on the degradation of the energy quality occurring within energy systems and is, therefore, insufficient for sustainable design or optimization goals. Nevertheless, exergy analysis based on both the first and second laws of thermodynamics can overcome shortcomings of energy analysis. In the present study, the performance of equipment of the steam generation system in Pakdis’s juice production Company located in Urmia is investigated. Owing to the energy and exergy analyses, the sites with the highest loss of exergy are identified as the critical points of the process.Materials and MethodsIn this study, the steam generation unit of a juice production company located in Urmia, West Azarbaijan province in Iran was exergetically analyzed. Using mass, energy, and exergy balances for each component of the unit, the thermodynamic objective functions including the exergy efficiency, exergy destruction rate, exergy loss rate, and the potential improvement rate were assessed. After data acquisition, energy and exergy analysis of this unit was achieved by solving the related equations with the help of thermodynamic properties along with programming in EES software package.Results and DiscussionThe results showed that the highest exergy efficiency of 98.44% was assigned to the steam distributor (O) of the unit with a potential improvement rate of 1.51 kW and an exergy loss rate of 68.80 kW, as well as the pump (M) before the fourth boiler with an exergy efficiency of 19.69%, had the lowest value of exergy efficiency. The values of 12.55 and 11.93 kW were obtained for the exergy destruction rate and its potential improvement rate, respectively. The highest exergy destruction rate of the unit was for the first boiler with a value of 12391.80 kW, with an efficiency of 19.55% and a potential improvement rate of 10295.26 kW.ConclusionWith regard to the energy and exergy analyses of the steam production system, more than 98% of the exergy destruction rate of the entire steam generation system was assigned to boilers, which had a major contribution to the exergetic efficiency of the system. The highest percentage of potential improvement was related to the first boiler and also the third boiler had the highest exergy loss rate, although the lowest exergy loss rate was the expansion tank of the system. In general, this study demonstrated the importance of exergy analysis for detecting the system components with the highest exergy destruction, which can be a breakthrough to identify these components and provides suitable solutions to improve the overall exergy efficiency of the steam-generating system.
N. Sedaghat Herfeh; A. M. Nikbakht; H. Mobli; A. R. Keyhani; A. Piri
Abstract
IntroductionSour cherry concentration is a significant agro-industry in the world. In 2016, world production was 13.8 million tons and most of which were processed in the form of concentrate or frozen products. Iran has the 6th rank among the producers of sour cherry and experienced a highly rise (45%) ...
Read More
IntroductionSour cherry concentration is a significant agro-industry in the world. In 2016, world production was 13.8 million tons and most of which were processed in the form of concentrate or frozen products. Iran has the 6th rank among the producers of sour cherry and experienced a highly rise (45%) in production in 2016. A conventional energy system evaluation is performed using the energy analysis method. The thermodynamic inefficiencies occurring within the system (factors that cause a gap between performance and ideal state) are not identified and evaluated by energy analysis.Materials and MethodsPakdis concentrate production line includes a plate heat exchanger (HE) converter to preheat input juice using condensate water energy and crude juice heat outlet, four multipurpose falling evaporators (E1, E2, E3, E4), a distillation tower for raw juice aromatization (DT) and a juice cooling system (JC).A thermographic camera (G120EXD, NEC Avio, Japan) was used for thermographic recording. Initial examination of the thermography results showed that the external surface temperature of the equipment except for the evaporators (E1, E2, E3, E4), the boilers (B1, B2, B3) and the condensation tank of the evaporation line (CT1) had very little difference with the ambient temperature around them, and therefore, their heat flux was ignored.Due to limitations, the mass flow rates of the evaporation line (except for inlet juice) were not measurable, and therefore, energy analysis was used to calculate them. Energy analysis involves the simultaneous resolution of mass and energy balances for a system.Results and DiscussionThe heat loss rate from the first evaporator (E1) was calculated to be 21.23 kW from which mass/energy balances and mass flows were extracted. Also, heat loss rate from utilities E2, E3, E4, and CT1 were calculated from mass-energy balances. Streams 32, 49, 52, and 54 are not utilized and exit the system. Hence, they are assigned as heat loss streams within the evaporation line.The total energy loss rate in the evaporation line was calculated to be 4920.82 kW which contributes 74.8% of total input energy to the line. However, 73.39% of this loss is assigned to the cooling tower (stream 54). Stream 29 from the 4th stage evaporator enters the condenser, mixes with water, and provides cold water goes to the cooling tower. In the tower, water evaporates and dissipates heat to the environment. Stream 32 is the second loss stream with 14.8%. Also, it should be noted that heat loss from the surface of utilities makes 3.06% of energy loss of the evaporation line which implies that insulations are done properly in utilities.Evaporation performance may be rated simply and primarily by the steam economy. The value was calculated to be 2.63 in the evaporation line, i.e. 2.63 kg water is evaporated per 1 kg steam injected into the systemExergy rate in several streams of evaporation line. The exergy rate of fuel and products, exergy efficiency, exergy destruction rate, and exergy destruction ratio for each element of the line were reported. Total input exergy to the evaporation line is 4832.03 kW from which 1045.85 kW is destructed due to irreversibility and 3786.19 kW is dissipated.Major destruction occurs within barometric condenser (BC), pressure reducing valve (PR), a plate heat exchanger (HE), evaporators 1 and 2 (E1 and E2), cooling tower (CT), and then evaporators 3 and 4 (E3 and E4). The remaining destruction in other utilities is negligible.ConclusionUsing the first and second laws of thermodynamics and instrumentation procedure, sub-systems of the evaporation unit of Pakdis Company were investigated and energy and exergy balances were coupled and solved. Thermographic assessment of likely zones to energy losses was employed. The whole process was monitored and mass-energy balances were developed. The steam economy as a reliable criterion for evaporation was calculated. To extract inefficiencies and possible optimizable unit operations exergetic analyses were carried out and subsequently the share of exergy loss and destruction and capital cost in the whole process was defined. It was found that capital cost is consistently ignorable compared to exergetic faults such as losses and destructions.
A. Rezvanivand fanaei; A. Hasanpour; A. M. Nikbakht
Abstract
IntroductionLarge industrial factories often discharge significant quantities of low-pressure steam (dead steam) into the atmosphere, which causes energy losses. Retaining low-pressure steam content reduces boiler load, resulting in energy savings and lower costs for the fuel consumption (for example, ...
Read More
IntroductionLarge industrial factories often discharge significant quantities of low-pressure steam (dead steam) into the atmosphere, which causes energy losses. Retaining low-pressure steam content reduces boiler load, resulting in energy savings and lower costs for the fuel consumption (for example, gas consumption bill in a factory). The boosted-pressure steam is used in processes such as distillation, hot water production, space heating or vacuum generation. If the vapor pressure for the intended application is low, a thermo-compressor is able to increase the pressure and temperature to the required level. Thermo-compressors are a special type of gas compressor that uses an actuator to compress secondary fluid and does not have any blades or moving parts. The accurate prediction of the thermo-compressor performance improves the reliability of this process and increases its efficiency.Materials and MethodsTwo important characteristics for the current thermo-compressors are entrainment ratio (ER) and compression ratio (CR). The first is the dimensionless mass flow rate, and the second is the dimensionless pressure. The wet steam theory as a classic theory is used by Wolmer-Frankel-Zeldovich to calculate the amount of liquid particles. In order to select the best geometry for the thermo-compressor among all possible geometries, the performance of each model must be compared with other models. In following, the case that includes characteristic parameters associated with the target values has been selected.The commercial Ansys Fluent Versions 15, based on the finite volume method (FVM) was used to simulate and monitoring the flow behavior inside the thermo-compressor. The governing partial differential equations (PDE) were solved implicitly using a density-based solution. The convective heat transfer terms were discriminated based on the second-order upwind scheme. The non-linear governing equations were solved using the implicit coupling solver and the standard wall function was used near the wall. Given the three-dimensional flow for steam, the equations of mass conservation, momentum, and energy were written. The Realizable model was used to simulate turbulences in the flow.Results and DiscussionA summary of the results is presented in terms of the results of pressure, velocity magnitude, Mach number and temperature. A general understanding of this characteristic for a thermo-compressor is extremely important for recognizing the fluid flow inside it, and it is very useful for practical use. Pressure is the most important factor in the recharge section of a thermo-compressor. Increasing the recharge vapor pressure in a thermos-compressor revival the dead steam and increases the steam efficiency. The revival steam can be used in other parts because of their high thermal content. Another important factor in the study of flow behavior inside the thermocouple is velocity magnitude. This quantity, which is closely related to the concept of momentum inside the thermocouple, had high influences from high pressure inputs as well as the thermo-compressor geometry. The highest amount of velocity occurs after the initial nozzle and had a very high magnitude (1000 ms-1), which was also remarkably high in Monnet's terms. Another important characteristic of a flow is the temperature of the stream. The high input temperature associated with motive vapor at the outlet of the primary nozzle was sharply reduced, even in some section reached to 110 °Kelvin. Due to the very high flow momentum in this section, the fluid phase remained gas and it can be justified from the point of view of the fluid dynamics.ConclusionConsidering the importance of thermodynamic properties of steam in conversion and industries, it would be extremely beneficial to fully understand the interactions inside the thermocouple compressor. The importance of the discussed characteristics is more specific when there is a close relationship between each of these factors and energy consumption in a factory or in any industrial production unit. It was observed that the designed thermos-compressor was able to increase the velocity and temperature in a desirable range for the conversion of non-consumable vapor to the pressure and temperature. It was concluded that the Realizable model due to the prediction of the jet characteristics appearing in the flow regimes for axial symmetry had a high ability to simulate fluid flows inside the thermos-compressor.
Design and Construction
H. Rahmati Aidinlou; A. M. Nikbakht
Abstract
Introduction Increasing the area of absorber plate between the flowed air through the duct can be accomplished by corrugating the absorber plate or by using the artificial roughness underside of the absorber plate as the commercial methods for enhancing the thermohydraulic performance of the flat plate ...
Read More
Introduction Increasing the area of absorber plate between the flowed air through the duct can be accomplished by corrugating the absorber plate or by using the artificial roughness underside of the absorber plate as the commercial methods for enhancing the thermohydraulic performance of the flat plate solar air heaters. Evaluation of this requires the construction of separated solar air heater which is costly and time consuming. The constructed solar flat-plate collector simulator can be a sufficient solution for obtaining the heat transfer and thermodynamic parameters for evaluating the absorber plate. The inclined broken roughness was chosen as the optimum roughness which is surrounded by three aluminum smooth walls. Materials and Methods The duct for both smooth and roughened plate have been constructed based on the ASHRAE 93-2010 standard. In order to achieve a fully thermal and hydraulic developed flow, the plenum is constructed. The centrifugal fan is considered by applying the required air volume at the pressure drop obtained by the duct, plenum and the orifice meter. The TSI velocity-meter 8355 is used to measure the velocity of air crossing through the pipe connected to the centrifugal fan. The micro manometer Kimo CPE310-s with the resolution of 0.1 Pa is used to measure the pressure drop across the test section of the smooth and roughened duct. The LM35 sensors are used to measure the absorber plate and air temperature through the test section. Obtained parameters are used to calculate the Nusselt number and friction factor across the test section for smooth and roughened absorber plate. The Nusselt number and friction factor parameters which is obtained for smooth absorber plate based on experimental set-up, is compared with Dittus-Bolter and Blasius equations, respectively, for validating the simulator. By calculating the Nusselt number and friction factor, Stanton number is obtained based on the equation (6), and thermohydraulic coefficient is calculated by the equation (5) for the desired roughness. Results and Discussion Pressure drop for smooth duct is obtained to be 20 Pa. Maximum velocity crossed through the plenum is calculated by the equation (8). Thereafter, pressure drop for plenum by considering the maximum velocity in equation (7), is obtained to be 1.16 Pa. The same procedure for maximum velocity which is crossed through the orifice meter is obtained by the equation (10) and then the pressure drop for orifice meter is calculated equal to 243 Pa by considering the velocity in equation (9). Total pressure is given by the equation (11) to be 246.16 Pa. The required power for centrifugal fan is obtained equal to 105 W from equations (12), (13) and (14), respectively. Both aforementioned Nusselt number variations with Reynolds number were monotonously increased by increasing the Reynolds number. The gained RMSE and coefficient of determination between the Nusselt numbers are 0.0566 and 0.6944, respectively. The obtained RMSE and coefficient of determination between the friction factors are 0.0004 and 0.6814, respectively. The low value of the RSME and high value of the R2 analysis for both Nusselt number and friction factor shows that there is a good agreement between the experimental data and empirical correlations. Fig. 8 demonstrates that the thermohydraulic coefficient is decreasing as the Reynolds number increased. The effect of friction factor related to the Stanton number is shown up more effective by increasing the Reynolds number. It should be noted that the same procedure is conducted for Han's experiment where the thermohydraulic performance is decreased as the Reynolds number increased. The maximum magnitude of the thermohydraulic performance was achieved at minimum 3149 Reynolds number. Conclusion The flat-plate solar collector simulator was designed based on the ASHRAE 93-2010 standard which consists of the centrifugal fan, chosen based on the required air volume by considering the pressure drop in the duct, plenum and orifice meter. The experiment was conducted between 3149 to 19247 Reynolds numbers. The good agreement between the comparison of the Nusselt number and friction factor obtained by the experiment for smooth duct was achieved by the Dittus-Bolter and Blasius equations, respectively, to validate the simulator. The obtained thermohydraulic coefficient for optimized roughness surrounded by three smooth walls was lower than the former investigated roughnesses at each Reynolds number
R. Mohammadigol; M. H. Khoshtaghaza; R. Malekfar; M. Mirabolfathi; A. M. Nikbakht
Abstract
Pistachio contamination to aflatoxin has been known as a serious problem for pistachio exportation. With regards to the increasing demand for Raman spectroscopy to detect and classify different materials and also the current experimental and technical problems for measuring toxin (such as being expensive ...
Read More
Pistachio contamination to aflatoxin has been known as a serious problem for pistachio exportation. With regards to the increasing demand for Raman spectroscopy to detect and classify different materials and also the current experimental and technical problems for measuring toxin (such as being expensive and time-consuming), the main objective of this study was to detect aflatoxin contamination in pistachio by using Raman spectroscopy technique and artificial neural networks. Three sets of samples were prepared: non-contaminated (healthy) and contaminated samples with 20 and 100 ppb of the total aflatoxins (B1+B2+G1+G2). After spectral acquisition, considering to the results, spectral data were normalized and then principal components (PCs) were extracted to reduce the data dimensions. For classification of the samples spectra, an artificial neural network was used with a feed forward back propagation algorithm for 4 inputs and 3 neurons in hidden layer. Mean overall accuracy was achieved to be 98 percent; therefore, non-liner Raman spectra data modeling by ANN for samples classification was successful.
M. Feyzollahzadeh; A. M. Nikbakht; A. Modarres Motlagh
Abstract
Safflower is a strategic plant regarding to its valuable nutrition value (45% extractable oil) and industrial uses. Due to massive import of edible oil to the country as well as high potential for safflower cultivation, the research on production of safflower for oil extrusion purpose is of remarkable ...
Read More
Safflower is a strategic plant regarding to its valuable nutrition value (45% extractable oil) and industrial uses. Due to massive import of edible oil to the country as well as high potential for safflower cultivation, the research on production of safflower for oil extrusion purpose is of remarkable importance. The design of various processing and oil extraction units and also their optimization which are in relation to seed attributes is essential. In this paper the effects of different irrigation and nutrient treatments on some important physical and mechanical properties of IL111 varieties of safflower seed were investigated. The measured properties included size, mass, volume, surface area, arithmetic and geometric mean diameter, sphericity, bulk and true densities, porosity, static and dynamic coefficient of friction, rupture force, deformation at rupture point, rupture energy, modulus of elasticity and seed hardness. The results indicated a significant effect of treatments on the biophysical and biomechanical properties at p ≤ 0.01. The maximum seed mass, geometric mean diameter and rupture energy were obtained when the (cg) treatment applied i.e. “Cut-off irrigation at the growth stage and bio sulfur nutrition”. Seed mass was found to be 0.040 gr to 0.055 gr. Results also showed a significant effect of geometric mean diameter on mass and rupture energy and also mass on seed hardness. Direct correlations observed between seed mass and rupture energy, which indicates that for larger and heavier seeds, much more energy required for oil extraction. The maximum rupture energy was measured as 0.033 J.