M. H. Aghkhani; M. Baghani
Abstract
The eggshell of birds, as a natural shield and package, protects the tissues inside it from microbial and mechanical damages. Proper intake of calcium, as an important and effective factor in increasing the strength and quality of the eggshell, could reduce complications. In this paper, the effect of ...
Read More
The eggshell of birds, as a natural shield and package, protects the tissues inside it from microbial and mechanical damages. Proper intake of calcium, as an important and effective factor in increasing the strength and quality of the eggshell, could reduce complications. In this paper, the effect of dietary calcium at five different levels on engineering features of Japanese quail eggs in a in their first laying period was investigated. The values for an average of mass, volume, specific mass, shell thickness, major diameter, central diameter and rupture force along the longitudinal and transverse axes were measured. Rupture energy or toughness, slope of the rupture curve (hardness), deformation along the longitudinal and transverse axis to the point of rupture as well as longitudinal and transverse deformation of 450 tested quail eggs (3 period of time, 5 treatment of calcium, 5 replication, 6 observation) were measured. The characters of the specific mass, shell thickness, rupture force, and slope of the rupture curve of quail eggs indicate the strength of quail egg. In this study, variations in all parameters indicating shell strength at different levels of dietary calcium were consistent with each other. Five different treatments with 1.5%, 2%, 2.5%, 3%, and 3.5% calcium content were supplied for the study. By increasing the calcium content of the quail diet from 1.5 to 3 wt%, the volume and weight of quail eggs dropped and shell thickness was reinforced. According to the results, the shell strength of quail eggs along the transverse axis was slightly less than the longitudinal axis, but the flexibility and energy required for quail egg rupture were much greater across the longitudinal axis.
M. Baghani; M. H. Aghkhani
Abstract
IntroductionIran as one of the largest producers of poultry in Asia and plays major role in feeding the world's population, particularly in the poultry industry. Research about this industry will help to improve the quality and the quantity of products. Increasing of the concentration of toxic gases ...
Read More
IntroductionIran as one of the largest producers of poultry in Asia and plays major role in feeding the world's population, particularly in the poultry industry. Research about this industry will help to improve the quality and the quantity of products. Increasing of the concentration of toxic gases such as NH3 (ammonia), CO2 (carbon dioxide), SH2 and CH4 in poultry houses comes from bird activity inside the barn is one of the basic problems of the farming. Increasing the amount of these gases more than standard level would cause heavy mortality and reductions in the production. Ammonia is one of the most toxic gases in poultry houses, which must be controlled. Different studies have been carried out on measurement of ammonia emissions from poultry houses to reduce energy consumption and reduce emissions of ammonia. But no specific study has been found on ammonia emissions in Iran and there is no reliable documents of ammonia emissions from poultry in this country.Materials and MethodsIn this study a poultry house with 18 thousand chickens was used to measure the emission rate of ammonia, the effect of temperature, moisture and age of chickens on emissions of ammonia in Sabzevar city. The barn was equipped with semi-automatic mechanical ventilation. At the first step of this research all sensors was installed for data collection, i.e., air velocity, temperature, humidity and ammonia concentration. Recorded data information were stored in a central computer. Five digital sensors, model AM2303, have been used to measure the temperature and humidity of the ambient air quality. The concentration of ammonia in the air inputs and outputs of the farm was measured using an ammonia sensor model TGS2444 every 10 seconds throughout the study and recorded in the central system. The average speed of the exhaust air was measured using the hot wire anemometer probe for every fan. The outputs of all sensors was converted to digital data and transferred to the central computer using RS485 cable in each module. Converting of the sensors output to digital data reduces changing the data and probable errors. Ammonia emission rates was found by calculating the concentration of ammonia and measuring the rate of input air and fans exhaust air by ammonia gas equilibrium equation. Relation of the ammonia emission rate was achieved using affective factors such as age of the birds and inside air humidity and temperature by regression method.Results and DiscussionThe average rate of ammonia emission during broiler growing were measured 89 mg per day for each bird. Ammonia emission rates increased until the age of 37 days and then decreased after the age of 37 days. Age of birds has the highest impact coefficient and temperature and relative humidity of the barn have the least impact coefficients on the ammonia emission rate. The ammonia emission rate has also increased by increasing the age of the bird, temperature and relative humidity of the air. Comparing of the ammonia emission rate derived from regression equation with real conditions showed that the regression equation method has a high precision for estimating the ammonia emission rate.ConclusionIt is showed that the results of this research can predict the ammonia emission rate in the poultry houses and predict the required ventilation rates to minimize the amount of ammonia concentration. The results of this study can be used for automatic control system to minimize energy consumption in the poultry houses. According to the results, the reduction of temperature and humidity in poultry house can be used to reduce the ammonia level.