F. Azadshahraki; K. Sharifi; B. Jamshidi; R. Karimzadeh; H. Naderi
Abstract
Early diagnosis of plant diseases before the occurrence of symptoms can reduce the loss of the yield and increase the quality of agricultural crops. It also reduces the consumption of pesticides, environmental risks, and the cost of production. For this reason, the objectives of the present study were ...
Read More
Early diagnosis of plant diseases before the occurrence of symptoms can reduce the loss of the yield and increase the quality of agricultural crops. It also reduces the consumption of pesticides, environmental risks, and the cost of production. For this reason, the objectives of the present study were non-destructive diagnosis of early blight of tomato plant and discrimination of the most important agents of early blight (A. solani and A. alternate) in the primary stages of incidence of the disease before appearing visual symptoms using Vis-NIR spectroscopy (400-900 nm). The spectral data were acquired from the leaves of the plants infected with A. solani and A. alternate, 48 hours, 72 hours, 96 hours, and 120 hours after inoculation. To develop the recognition model based on the spectral data, principal components analysis (PCA) coupled with artificial neural network (ANN) was used. The results showed that the PCA-ANN model could diagnose the infected plants and pathogen species with accuracy of 93-100% for test set samples. In 96 hours after inoculation, in addition to the simpler model (8 PCs and 3 neurons in hidden layer), accuracy of 100% was obtained. At all times after inoculation, there was no error in diagnosis of the plants infected with A. solani that is more pathogenic and aggressive than other species, from healthy plants. Early blight in tomato plant and the type of pathogen before visual symptoms, without any plant sample preparation, could be diagnosed non-destructively (with accuracy of 93-100%) using Vis-NIR (400-900 nm) spectroscopy coupled with PCA-ANN. It was concluded that this technology could be used for rapid, low-cost, and early diagnosis of this disease in tomato plant instead of time-consuming, expensive, and destructive laboratory methods.
Modeling
J. Javadi Moghaddam; S. Ozlati; Gh. Zarei; D. Momeni; F. Azadshahraki
Abstract
IntroductionGreenhouse technology is a flexible solution for sustainable year-round cultivation of many horticulture products, particularly in regions with adverse climate conditions or limited water and resources. Greenhouses are the structures that provide the desired conditions for plant growth throughout ...
Read More
IntroductionGreenhouse technology is a flexible solution for sustainable year-round cultivation of many horticulture products, particularly in regions with adverse climate conditions or limited water and resources. Greenhouses are the structures that provide the desired conditions for plant growth throughout the all seasons. Plant growing and crop production in the greenhouses require proper ventilation conditions to provide optimal temperature, relative humidity and CO2 and to minimize the toxic gases. Ventilation method of greenhouse is depending on the design of greenhouse ventilation and cooling is usually done by evaporative pad and fan systems or fan and vent systems. Recently different designs, different structures and different layouts of fans, pads and vents are used in greenhouses. Layout of fans, pads and vents affects the performance of ventilation systems. The aim of this study was to layout the fans, pads and vents to provide best air flow in an octagonal greenhouse. Materials and MethodsIn this study, three layouts of evaporative pad and fan systems and vents were modeled by computational fluid dynamics (CFD) method. For computational fluid dynamic of inside greenhouse airflow, the air flow was considered to be compressible. In order to estimate density, velocity and temperature, the Navier- Stokes equation included momentum, state, energy, continuity was used. For modeling the fluid flow, all necessary and dependent parameters of climate were considered based on the concentration and air pressure at the level of the open sea. Fluid flow equations were solved by finite volume technique. Three mentioned layouts of this study were 1- fans on the roof of the pyramids and vents on the wall of the pyramids, 2- pads and fans on the greenhouse side walls and 3- pads on the greenhouse side walls and fans on the roof of the pyramids (parallel pads). The performances of each arrangement can be improved by the speed of the fans, the size of the vents. The main equation in fluid flow simulation using CFD can be done by the following set of equations in which the continuity equation in the form of indicial notation can be presented as: Moreover, the momentum equation can be written by the following form: The equation 4 shows the state equation in a fluid flow interaction. All technical calculations and CFD simulations were done by Solidworks 2018 software.Results and DiscussionThe results showed that octagonal greenhouse by a specific form of the vents on the walls and fans on the roof could provide a circular air flow around the plants in the greenhouse. However, due to different powers of the fans, different velocity and different shape of air circulation could be achieved. When pads and fans are located on the greenhouse side walls, uniform air flow from the pads move uniformly throughout the greenhouse and then exit from opposite fans which causes desired air flow in the greenhouse. When the fans are located on the roof of the pyramids and pads are located on the side walls parallel, pad surface increases in the greenhouse and thus relative humidity increases and temperature decreases.ConclusionBecause of the specific shape of the vents in octagonal greenhouse, different air velocity and different shape of air circulation will be achieved when different power of the fan is used. This causes that the octagonal greenhouse can be used in different climate conditions. When the fans are located on the roof of the pyramids and pads are located on the side walls, temperature decreases and relative humidity increases and this layout is desirable for hot and dry climate. An octagonal greenhouse can be used in different climate by using a suitable layout of fan, pad and vents.
M. Ghasemi-Nejad Raeini; E. Bougari; F. Azadshahraki
Abstract
Introduction Rice is one of the most important cereal grains in the world. Milling is one of the most important phases of the paddy processing that affects the quality and quantity of the product. Postharvest losses include threshing, drying, transportation and milling contains about 30–40% of ...
Read More
Introduction Rice is one of the most important cereal grains in the world. Milling is one of the most important phases of the paddy processing that affects the quality and quantity of the product. Postharvest losses include threshing, drying, transportation and milling contains about 30–40% of total produced rice in developing country. Parboiling increases the mailing efficiency of rice from 51% to 80%, protein, fat and ash content. Champa variety is one of the most important varieties of rice in the southwest of Iran and has low milling quality in spite of its flavor and aroma. This study was conducted to assess increasing the quality of Champa rice milling phase by parboiling method. Materials and Methods This study was conducted to assess the increasing quality of Champa rice milling phase by parboiling method in the growing season of 2016 in Lordegan city. Paddies were prepared from a rice farm in Lordegan city. Parboiling treatments consisted of three soaking temperatures (35, 55 and 75°C) and two steaming times (15 and 25 minutes) at a steam temperature of 110 °C. This study was performed in a factorial experiment based on a completely randomized design in three replications. Parboiling process included soaking, steaming, drying and whitening. Bain Marie was used to keep the water temperature constant in two phases of soaking and steaming. Samples were placed in a oven to decrease the humidity in the drying phase. Breakage percentage, loss of solid material, milling efficiency, whiteness degree and the ratio of length to width were measured in raw and baked rice in all samples. Results and Discussion Breakage in control treatment (non-parboiling) was 19.38%. The lowest breakage percentage (4.03%) was obtained in parboiling treatment (soaking temperature of 55 °C and a steaming time of 15 minutes). Parboiling improved milling efficiency and reduced loss of solid materials. Highest milling efficiency (67.11%) was obtained in a soaking temperature of 55 °C and steaming time of 25 minutes. The lowest amount of loss of solid materials (1.74%) was obtained in a soaking temperature of 75 °C and steaming time of 25 minutes. The highest ratio of length to width (2.46) and the highest whiteness degree (76.54%) was obtained in no parboiling treatment. There was no significant difference in water absorption parameter between parboiling treatment and non-parboiling treatment. Conclusion Champa rice variety has a very good flavor and aroma but did not have good appearance and its breakage percentage is not good. Parboiling reduces the breakage and improves the appearance in raw and baked rice. Parboiling had a lot of positive effects on the milling quality of this rice cultivar. The best treatment (soaking temperature of 55 °C and steaming time of 25 minutes) reduced breakage percentage (by 79%) and loss of solid materials (by 37%) and increased milling efficiency (by 2%) in comparison with control treatment (non-parboiling). Overall, parboiling reduced rice streaking during baking by improving the quality attributes of paddies and finally improved the rice shape.