H. Biabi; S. Abdanan Mehdizadeh; M. Salehi Salmi
Abstract
IntroductionThe automatic detection of plant diseases in early stages in large farms, in addition to increasing the quality of the final product, could prevent the occurrence of irreparable damage. To this end, accurate and timely diagnosis of farm conditions is of great importance. In order to facilitate ...
Read More
IntroductionThe automatic detection of plant diseases in early stages in large farms, in addition to increasing the quality of the final product, could prevent the occurrence of irreparable damage. To this end, accurate and timely diagnosis of farm conditions is of great importance. In order to facilitate production potential and prevent a significant decline in yield, disease diagnosis is necessary periodically throughout the whole life of the. On the other hand, early detection of the disease in its early stages of growth can also prevent the spread of diseases. One of the most common methods for diagnosing plant diseases is the use of visual methods, but this method is difficult to evaluate the performance of a number of parameters such as the effects of the environment, nutrients, and organisms and so on. Furthermore, the accuracy of repetitions is very much related to individual fatigue of inspector. Research on activities that have the ability to identify diseases at an early stage and prevent the spread of contagious diseases are of great importance. Therefore, the use of new applications and new detection technologies to protect can significantly reduce the risk of product loss. Therefore, the purpose of this research is to design and construct an intelligent control system that automatically detects the health of the lilium plant and to improve the plant's condition.Materials and MethodsSample collectionIn this study, 80 pots of four kilograms (including healthy and disease plants) were considered for plant growth in vegetative stage. The spring onions were grown in pots with 20 cm diameter and 30 cm height. Experiments were carried out in a greenhouse with a temperature of 27.15°C day/night and a relative humidity of 70-75%.Image processing In this research, the camera was placed at a constant distance of 50 cm from the flower to evaluate the stem and the leaves attached to it. The images were captured under the constant light conditions in the greenhouse during a specific hour of the day (10 to 12) every other day. The image was taken in RGB color space with a resolution of 1024 × 840 pixels, and after image transfer to the computer, image processing was performed using Matlab 2016a. After examining the plant image, 9 color channels (R, G, B, L, a, b, H, S, and V) were examined from three color spaces (RGB, Lab and HSV) and stem length to diagnosis of Botrytis elliptica disease.Feature selection and classification In this research, after improving the image and extracting the feature, the linguistic hedges method was used to select the features and the K-means clustering was applied in the N-division of the k-clustering specified by the user. In this method, each attribute was assigned to a cluster closer to the mean vector. This method continues until there was no significant change in the mean vectors between successive repetitions of the algorithm.Results and DiscussionAccording to the results of feature selection L leaf, L stem, a leaf, b leaf, H leaf, b stem, H stem, V leaf and stem length, were the best features. Moreover, the accuracy of diagnosis for the diseased and healthy plants were 96.42 and 100 percent, respectively, and the overall classification accuracy was 97.63 percent. Therefore, in general, it can be said that the proposed image processing method is desirable and acceptable in order to diagnose the disease. According to this, zhuang et al. (2017) used sparse representation (SR) classification and K-means clustering to identify leaf-based cucumber disease. In the proposed method, it has been shown that system could detect cucumber diseases with accuracy rate of 85.7%. Therefore, the proposed image processing technique seems to be able to diagnose the disease quickly and easily.ConclusionToday, in the modern agricultural systems, numerous computational methods have been designed to help farmers to control the proper growth of their products. However, there are still major problems with the rapid, accurate and classification of diseases in the early days of the disease. Therefore, the purpose of this study was to design, construct and evaluate a smart system based on image processing in order to identify and classify the leaf disease of the leaves of the lilium plant and remove it by spraying the contaminated parts. For this purpose, the linguistic hedges method was used to select the characteristics and k-means method to classify the infected plant from healthy. The results of the classification for the diseased and healthy plants were 96.42 and 100 percent, respectively, and the overall classification accuracy was 97.63 percent, which indicates the acceptable accuracy of the machine vision system in detecting the disease.
Design and Construction
H. Biabi; S. Abdanan Mehdizadeh; M. Nadafzadeh; M. Salehi Salmi
Abstract
Introduction Leaf color is usually used as a guide for assessments of nutrient status and plant health. Most of the existing methods that examined relationships between chlorophyll status and carotenoid of leaf color were developed for particular species. Different methods have been developed to measure ...
Read More
Introduction Leaf color is usually used as a guide for assessments of nutrient status and plant health. Most of the existing methods that examined relationships between chlorophyll status and carotenoid of leaf color were developed for particular species. Different methods have been developed to measure chlorophyll status and carotenoid. However, the high cost and difficulty to use have restricted their application, whereas the handheld chlorophyll meters such as the SPAD has become popular in the last decade for non-destructive measurement of chlorophyll content. SPAD meter readings have found to be related to the plant’s nutrition status, seed protein content, types of nodulation, and photosynthetic rates of leaves. Digital color (RGB) image analysis, another nondestructive technique is becoming increasingly popular with its potential in phenotyping various parameters of plant health status. The development of low-cost digital cameras that use charged-couple device (CCD) arrays to capture images offers an advantage of low-cost real-time monitoring process over optical sensor based SPAD meter. Gupta et al. (2012) estimated chlorophyll content, using simple leaf digital analysis procedure in parallel to a SPAD chlorophyll content meter. The chlorophyll content as determined by the SPAD meter was significantly correlated to the RGB values of leaf image analysis (RMSE = 3.97). The aim of this research is developing a new inexpensive, hand-held and easy-to-use technique for detection of chlorophyll and carotenoid content in plants based on leaf color. This method provides rapid analysis and data storage at minimal cost and does not require any technical or laboratory skills. Materials and Methods Sample collection In this research, 15 leaves were randomly selected from six types of plants (Shoeblackplant, Vitex, Spiderwort, Sacred fig, Vine and Lotus). Afterwards, the chlorophyll content of the leaf was measured in 3 different ways: 1) using a SPAD instrument; 2) using machine vision system (non-destructive method), and 3) laboratory test using a spectrophotometer. Chlorophyll and carotenoid content The chlorophyll content of the leaf was measured and recorded using SPAD chlorophyll meter (Hansatech, model CL-01, Japan) and spectrometer as explained by Dey et al. (2016). Furthermore, to measure the carotenoid content method described by Gitelson et al. (2006) was utilized. Image processing For estimation of chlorophyll using the image processing algorithm, sample images were taken using CCD (CASIO, model Exilim EX-ZR700, Japan) and transferred to the computer. The camera was mounted perpendicular to the horizontal plane at a fixed distance of 25 cm from the samples. In a consequence histogram of leaf, images were equalized and the average of each color channels from RGB, Lab, HSV, and I1I2I3 were extracted using Matlab 2016. Decision tree regression (DTR) algorithm To develop a regression model to predict chlorophyll and carotenoid content, two decision tree were constructed. The average of each color channels from RGB, Lab, HSV, and I1I2I3 become the predictor variables or feature vector and the real known chlorophyll and carotenoid content become the target variable or the target vector of each regression tree. To develop the regression models, dataset (90 observations) was split into training (60 observations) and test (30 observations) data. Results and Discussion According to the obtained results, a high correlation of 0.92 for chlorophyll and 0.85 for carotenoid was achieved, respectively, between the image processing method and the values measured by the spectrometer. Therefore, it can be said that the proposed image processing method has a desirable and acceptable performance for prediction of both chlorophyll content and carotenoid. The review points out a need for fast and precise leaf chlorophyll measurement technique. With this in mind, Dey et al. (2016) used image processing techniques to measure chlorophyll content. For the purpose of analysis of the proposed model, the model outcome was compared with the LEAF+ chlorophyll meter reading. Regression analysis proofed that there was a strong correlation between the proposed image processing technique and chlorophyll meter reading. Thus, it appears that the proposed image processing technique of leaf chlorophyll measurement will be a good alternative for measuring leaf chlorophyll rapidly and with ease. Conclusion In this research, collections of images from six divers plants (Shoeblackplant, Vitex, Spiderwort, Sacred fig, Vine and Lotus) were analyzed to predict chlorophyll and carotenoid content at different color spaces (RGB, Lab, HSV, and I1I2I3). Based on the results, it was shown that there were high correlations of 0.92 for chlorophyll content as well as 0.85 for carotenoid between the image processing method and the values measured by the spectrometer. Therefore, in general, it can be concluded that the proposed image processing method has a desirable and acceptable performance for prediction of chlorophyll content as well carotenoid.