M. Ghasemi; M. Khojastehpour; M. H. Aghkhani
Abstract
Evaluation of mechanical and electrical properties of agricultural products plays an important role in equipment design and optimizing post-harvest operations. Among the crops, tomato and its products are the major processing industries in the world and its economic importance is increasing. Considering ...
Read More
Evaluation of mechanical and electrical properties of agricultural products plays an important role in equipment design and optimizing post-harvest operations. Among the crops, tomato and its products are the major processing industries in the world and its economic importance is increasing. Considering the importance of the quality and various post harvesting uses of tomato, the evaluation of mechanical properties including rupture force and deformation and the work done to establish the rupture of two tomato cultivars (Petoearly CH and Newton) were studied under penetration test based on the electrical conductivity. These properties were measured at three levels of 1, 3 and 5 days after harvesting. The evaluated mechanical properties of both cultivars were decreased by increasing the storage time. Interaction of cultivar and time were significant at the 1% level, for all mechanical parameters except the deformation failure in both cultivars. The electrical conductivity of both cultivars was decreased by increasing the storage time. Interaction of cultivar and time on the electrical conductivity of both cultivars were significant at the 1% level. Significant relationships were found at the 1% level between electrical conductivity and mechanical properties except for deformation of Petoearly CH cultivar. Among the mechanical parameters, rupture forces and rupture works of both cultivars were highly correlated with the electrical conductivity.
Design and Construction
J. Baradaran Motie; M. H. Aghkhani; M. H. Abbaspour-Fard; A. Lakziyan
Abstract
The issue of soil salinity is one of the snags for increasing agricultural productivity, which must be inhibited by appropriate devise and scientific management. One way to identify salty areas of farm lands is to prepare salinity maps. In this study, a prototype soil apparent electrical conductivity ...
Read More
The issue of soil salinity is one of the snags for increasing agricultural productivity, which must be inhibited by appropriate devise and scientific management. One way to identify salty areas of farm lands is to prepare salinity maps. In this study, a prototype soil apparent electrical conductivity measuring and mapping device, was designed and built. This device employs direct contact method of electrodes with soil (Also called Wenner method). The system inputs include power supply voltage, location signal from a GPS receiver and signal of voltage between the electrodes. The outputs include the apparent electrical conductivity with respective to geographical coordinate that created in a TEXT file, and then transmitted through a RS-232 serial port to a PC. Electrical conductivity data calibrated and mapped using ESAP-95 software package. To evaluate the device, electrical conductivity map of a land with area of 0.8 Ha surveyed in two ways: using the on the go EC mapper and capturing soil samples manually. The results of these two methods were then compared. Assessment of the device in a clay-loamy soil with low salt level, showed a good correlation with the laboratory EC, having mean error (ME) of -15.27μS.cm-1. Point to point comparison between surveyed data and laboratory EC’s shown that in 67 percent of measurements the errors were under 10 percent. These errors are acceptable mainly due to unknown soil variables and in comparison with other research findings.