Agricultural waste management
M. Sami; A. Akram; M. Sharifi
Abstract
IntroductionThe need to develop alternative energy sources especially renewable energy has become increasingly apparent with the incident of fuel shortages and escalating energy prices in recent years. With the advent of renewable energy, various studies have been conducted to investigate the potential ...
Read More
IntroductionThe need to develop alternative energy sources especially renewable energy has become increasingly apparent with the incident of fuel shortages and escalating energy prices in recent years. With the advent of renewable energy, various studies have been conducted to investigate the potential of biogas production from agricultural waste. Considering the importance of retention time and methane production potential for designing industrial digesters, many studies on potential analysis and modeling of the digestion process of different products have been carried out by various researchers. These studies are valuable for the design and implementation of anaerobic digesters. Apple is one of the most popular fruits in many parts of the world and is widely cultivated in many temperate regions of the world. Considering the large volume of apple waste in Iran, this study was designed based on potential evaluation and modeling of biogas production from apple pulp.Materials and MethodsIn order to measure the potential of biogas production from apple pomace, a number of lab-scale digesters with a capacity of 600 ml and a working capacity of 400-500 ml were made. pH and C/N ratio were modified by adding NaOH and urea solution, respectively. Three different temperature treatments including psychrophilic (ambient temperature), mesophilic (37ºC), and thermophilic (47ºC) were applied to the substrate. Used pomace samples were collected from the output of an apple juice factory in southern Isfahan province, Iran. Anaerobic Biodegradability (ABD) was obtained by dividing the experimental methane production potential (BMP) obtained from the experimental results on the theoretical methane production potential. Three most common kinetic models of Gompertz, Logistic, and Richards were used to predict and stimulate the cumulative methane production of treatments.Results and DiscussionUnder ambient temperature, the digestive process took a longer time, and the time of maximum dilly biogas production was considerably more than the other two treatments. Statistically, production time and peak time of this treatment was higher than the other two treatments at 1% significance level. Maximum daily biogas production in the ambient treatment was observed on day 37th with a volume of 6.99 g-VS-1 ml, while maximum daily biogas production in the treatments of 37 °C and 47 °C were observed on days 22th (20.16 ml g-VS-1) and 20th (25.57 ml g-VS-1), respectively. In all three treatments, daily biogas production increased sharply in the first incubation days and after that reduced and then production increased again. In mesophilic and thermophilic treatments, the production of biogas modestly stopped after 35 days, but under the ambient temperature, the process of production continued after 55 days. The methane concentration of biogas in the psychrophilic treatment was significantly lower than the other two treatments at 1% level. Two treatments of 37°C and 45°C have a significant difference in methane yield at 1% level. Nevertheless, the production of biogas in two treatments was not statistically different. In all three treatments, the lowest pH was recorded after 7 days of production and the highest pH was recorded on days 34-40. All three kinetic equations were able to simulate the methane production process with high precision, although the results of the Logistic model provided higher accuracy. In the treatment 47 °C, the efficiency of the studied equations was higher than other treatments and models were able to predict the production process with higher accuracy. Results of the experiment show the high biochemical methane production potential of apple pomace (473.17 ml g-VS-1), which under laboratory condition of this study up to 63.9% of this potential (302.70 ml g-VS-1) was obtained. ConclusionThis study results are valuable for the design and implementation of industrial digesters. The results indicate the apple pomace has a high potential for the production of methane and its biodegradability is high. Apart from pH that is acidic, other apple pulp factors are appropriate for the activity of methanogenic bacteria. In terms of nutrients, apple pomace is also a good environment for the growth of anaerobic bacteria.
Modeling
J. Taghinazhad; R. Abdi; M. Adl
Abstract
Introduction Anaerobic digestion (AD) is a process of breaking down organic matter, such as manure, in the absence of oxygen by concerted action of various groups of anaerobic bacteria. The AD process generates biogas, an important renewable energy source that is composed mostly of methane (CH4), and ...
Read More
Introduction Anaerobic digestion (AD) is a process of breaking down organic matter, such as manure, in the absence of oxygen by concerted action of various groups of anaerobic bacteria. The AD process generates biogas, an important renewable energy source that is composed mostly of methane (CH4), and carbon dioxide (CO2) which can be used as an energy source. Biogas originates from biogenic material and is therefore a type of biofuel. Enhancement of biogas production from cattle dung or animal wastes by co-digesting with crop residues like sugarcane stalk, maize stalks, rice straw, cotton stalks, wheat straw, water hyacinth, onion waste and oil palm fronds as well as with liquid waste effluent such as palm oil mill effluent. Nevertheless, the search for cost effective and environmentally friendly methods of enhancing biogas generation (i.e. biogas yield) still needs to be further investigated. Many workers have studied the reaction kinetics of biogas production and developed kinetic models for the anaerobic digestion process. Objective of this study is to investigate the effect of biological additive using of organic loading rate (OLR) in biogas production from cow dung. In addition, cumulative biogas production was simulated using logistic growth model, and modified Gompertz models, respectively. Materials and Methods The study was performed in 2015-2016 at the agricultural research center of Ardabil Province, Moghan (39.39 °N, 48.88° E). Fresh cow manure used for this research was collected from the research farm of the Institute for Animal Breeding and Animal Husbandry, Moghan. It was kept in 30 l containers at ambient temperature until fed to the reactors. In this study, experiments were conducted to investigate the biogas production from anaerobic digestion of cow manure (CM) with effect of organic loading rate (OLR) at mesophilic temperature (35°C±2) in a long time experiment with completely stirred tank reactor (CSTR) under semi continuously feeding. The complete-mix, pilot-scale digester with working volume of 180 l operated at different organic feeding rates of 2 and 3 kg VS. (m-3.d-1). the biogas produced was measured daily by water displacement method and its composition was measured by gas chromatograph. Total solids (TS), volatile solids (VS), pH and etc. were determined according to the APHA Standard Methods. The biogas production kinetics for the description and evaluation of methanogens was carried out by fitting the experimental data of biogas production to various kinetic equations. In addition, Specific cumulative biogas production was simulated using logistic kinetic model exponential Rise to Maximum and modified Gompertz kinetic model. Results and Discussion The experimental protocol was defined to examine the effect of the change in the organic loading rate on the efficiency of biogas production and to report on its steady-state performance. The biogas produced had methane composition of 58- 62% and biogas production efficiency 0.204 and 0.242 m3 biogas (kg VS input) for 2 and 3 kg VS.(m-3.d-1), respectively. The reactor showed stable performance with VS reduction of around 64 and 53% during loading rate of 2 and 3 kg VS.(m-3.d-1), respectively. Other studies showed similar results. Modified Gompertz and logistic plot equation was employed to model the biogas production at different organic feeding rates. The equation gave a good approximation of the biogas yield potential (P) and correlation coefficient (R2) over 0.99. Conclusion The performance of anaerobic digestion of cow dung for biogas production using a completely stirred tank reactor was successfully examined with two different organic loading rate (OLR) under semi continuously feeding regime in mesophilic temperature range at (35°C±2). The methane content of 58- 62% and actual biogas yield of 0.204 and 0.242 m3 biogas.(kg VS input-1) were observed for 2 and 3 kg VS. (m-3.d-1), respectively. The modeling results suggested Modified Gompertz plot and Logistic growth plot both had higher correlation for simulating cumulative biogas production. Therefore, arising from the increasing environmental concern and prevailing wastes management crises, optimizing biogas production by 2 kg VS. (m-3.d-1) represents a viable and sustainable energy option.
M. Safari; R. Abdi
Abstract
Introduction
Seventy million tons of agricultural crops are produced from 18 million hectares of agricultural lands in Iran every year. Since 80% of the crops (wt. basis) ends up as residues, therefore, about 50 million tons of crop residues are generated annually the majority of which is burnt on field ...
Read More
Introduction
Seventy million tons of agricultural crops are produced from 18 million hectares of agricultural lands in Iran every year. Since 80% of the crops (wt. basis) ends up as residues, therefore, about 50 million tons of crop residues are generated annually the majority of which is burnt on field leading to vast emissions of greenhouse gases (GHG) due to the incomplete combustion process. These residues could potentially be transformed into heat energy directly by adopting a burning process or indirectly by first transforming them into secondary fuel as hydrogen, bio-methane, methanol or ethanol.
Materials and Methods
The present study was conducted using, wheat and rapeseed straws dried at ambient temperature co-digested with fresh cow dung while the total solid content and detention time were kept constant. To conduct the Anaerobic Digestion (AD) experiments, cylinder reactors (13 L) were constructed and placed in a water bath equipped with a heater and sensor to maintain the temperature at 35±2 oC. The biogas produced in the digester was investigated by measuring the displacement of the water in a measuring tube connected to the reactor. Gas samples were obtained from the sampling port and were analyzed gas chromatograph. The temperature for detector, injector and oven were 170, 110 and 50 oC respectively. Before the test, the first CH4 and CO2 net gases, peaks corresponding percentage was determined with respect to the retention time of the area. Then sample was compared with standard gas and samples gas percentage was determined. The residues were mechanically pretreated using a mill in order to increase the availability of the biomass to enzymes. After the pre-treatment, the material (<2 mm) was mixed with a different proportion of fresh cow dung, Initial Total Solids (TS) content in the reactor was adjusted at 9%. Factors such as PH, Volatile Solids (VS) were determined by the standard method.
Results and Discussion
A decrease in the process pH was observed in the first few days of the digestion and this is due to high volatile fatty acid (VFA) formation. These results were compatible with sanaee moghadam et al. (2013). The results obtained showed that, the highest rate of VS reduction belonged to rapeseed residues at 52.22%.The lowest rate of VS reduction attributed to wheat residues at 36.79%. The rapeseed residues with 311.45 Lit.kg-1 VS had the highest accumulated methane followed by wheat straw with 167.69.28 L.Kg-1 VS in probability level of 5%. The average percentages of methane production for rapeseed straw and wheat straw during the 140 days experiment under mesophilic condition were 66% and 55%, respectively. Production of methane had delay and started after 46th day. Much reason may be possible. Inoculums used in this study were only fresh cattle dung. The mixture of fresh cattle dung and effluent of anaerobic digester or fresh rumen fluid may be decrease retention time and increase biogas production. According results of Budiyono the rumen fluid inoculated to biodigester significantly affected the biogas production. Rumen fluid inoculums caused biogas production rate and efficiency increase more than two times in compare to manure substrate without rumen fluid inoculums (Budyono et al., 2010). The other reason was pretreatment. This study applied just mechanical pretreatment. According to Cecilia studies, different pretreatment combined with mechanical pretreatment decrease retention time and increase biogas production efficiency (Cecilia et al, 2013). However, Zhang et al. claimed that it is hard to say which method is the best because each has its own strong point and weak point. Yet, until now, none of the pretreatment technologies has found a real breakthrough.
Conclusions
According to this study, rapeseed residues had the highest level of methane production in comparison with wheat residues. The rapeseed residues combine with cattle dung had suitable potential to methane production. The 140 days, Biomaethane Potential (BMP) of rapeseed residues combine with cattle manure had 311. 45 Lit/kg vs. add. Moreover, it had high percentage of VS content reduction (52.22%). The high retention time was observed (140 day). One reason was lack of suitable inoculums and pretreatment. Furthermore, the lingo-cellulose nature of the crop residues, lower will be the biodegrade ability. Furthermore, the anaerobic co-digestion of rapeseed straw with cattle manure is feasible for production of methane.