Design and Construction
O. Esmand; S. R. Mousavi Seyedi; D. Kalantari
Abstract
Introduction The use of new technology in planters is one of the most important factors in the advancement of agricultural science. In the present study, an electronic warning system has been designed and implemented to prevent large seeds from falling from the fall pipe into the ground groove. In this ...
Read More
Introduction The use of new technology in planters is one of the most important factors in the advancement of agricultural science. In the present study, an electronic warning system has been designed and implemented to prevent large seeds from falling from the fall pipe into the ground groove. In this study, three types of corn, bean and soybean seeds have been used, using two laser and microwave sensors. Viewing and comparison of the two sensors and their performance in two conditions of medium and high sensitivity in both laboratory and field conditions were conducted. In this case, the differences between the two sensors in different sensitivities have been evaluated and compared. The performance of the sensors in seed count has also been studied and compared. According to the results obtained in both cases, the sensors performance was acceptable, and especially in the maximum sensitivity of the sensors, they were able to handle well the clogs created in different situations (clogging down or above the fall pipe or emptying the seed tank). Detect and alert in a timely manner. Also, the count of seeds in all three seed types was recorded with high accuracy compared to the actual number. Materials and Methods Three types of coarse seeds (corn, beans and soybeans) as well as two types of sensors (laser and microwave) with two levels of medium sensitivity and high sensitivity were used for the experiments. Laser sensors are one of the most precise instrumentation and industrial automation tools that use laser light to detect objects or even precise distances. The function of the microwave sensor is that the high frequency waves are transmitted when the power supply is connected. These waves are reflected back to the module receiver if they hit objects. The open waves in the module are multiplied by the frequency of transmission by the mixer and a low-output (IF) signal is generated. The output frequency is equal to the difference between the frequency of the transmitted and reflected waves caused by the Doppler effect. Based on this frequency, the presence of a moving object and its speed are detected. Experiments were carried out at both laboratory and field levels and in both moderate and high sensitivity modes using variable resistance mounted on the controller. The equivalent distance for each seed test is 100 meters, so twice for each seed in the laboratory and field level for each of the laser and microwave sensors in both high and medium sensitivity modes. In this system, in case of falling pipe clogging due to seed accumulation or mud under the falling pipe or other factors, an alert system (warning beep), along with the corresponding LED light, indicates a problem in the seed fall system and the operator alerts paying attention to the LED light (green or red) will detect the problem. Results and Discussion The results indicated that by installing a variable resistance inside the circuit, different sensors can be created in the sensors. Increasing the sensitivity of the sensor as much as possible can cause higher the efficiency of the sensor. In the two cases of medium and high resistance, sensors work with medium and high sensitivity. It works since both modes have been tested and the results have been satisfactory. The accuracy of counting and seed detection accuracy between two laser sensors and microwave sensors in two medium and high sensitivity modes were calculated and evaluated. The experiments in the laboratory showed that the difference in the number of seed count by laser sensor compared to the actual number in maize seed at medium and high sensitivity were 87.4% and 94.3%, respectively, in bean seeds 89.1% and 94.2%, respectively. And in soybean seed were 89.4% and 92.3%, respectively. Conclusion The developed embedded system can successfully check and announce the instantaneous state of three types of grain tested (corn, beans and soybeans) in the seed delivery tube of a hand single-row planter with visual cues (on or off LED lights) and audible signals (on or off the alarm), whenever there is a grain flow or no grain flow. Likewise, the developed system can show the blockage at the end of the seed delivery tube with visual indications of the green and red lights on or off and the alarm sound described in detail. These warnings are indications of a fall pipe failure or lack of grain flow in the grain measuring mechanism toward the opening groove and then into the ground. This type of detection alerts the operator in a timely manner by monitoring the status of the grains in the measuring system and ensuring that the grains are located in the ground.
Design and Construction
A. Mondani; S. H. Karparvarfard
Abstract
IntroductionMaximum efficiency of natural resources, reduced risk of production, improved fertility of soil, and increased production per area enjoyment have made intercropping a preferential practice compared with cropping. One of the fundamental problems in this kind of cropping is non-existence of ...
Read More
IntroductionMaximum efficiency of natural resources, reduced risk of production, improved fertility of soil, and increased production per area enjoyment have made intercropping a preferential practice compared with cropping. One of the fundamental problems in this kind of cropping is non-existence of suitable machines. In this research, a new intercropping machine has been designed and built for intercropping of corn and bean with precise ratios and different planting patterns. Materials and MethodsThe experiments were conducted at the Badjgah Research Station, Shiraz University, located in NW Shiraz, Iran. The soil texture was clay loam (16% sand, 48% silt, and 35% clay). The plot size was 9 m wide and 12 m long. The total number of the plots were 9. The basic components of intercropping machine were an adjustable frame to adjust row spacing for each unit planter about 550 mm horizontally independently (the row spacing between corn and bean planting lines was considered 375 mm), a hinged frame for adjustment of seeding depth and possible poor emergence of plants due to very deep or shallow planting, metering case frames for installing the vacuum metering disk units around which the seed drums have a row of 36 holes of 4.5 and 5.5 mm diameter for corn and bean, respectively, seed delivery tubes, a suction fan, shovel openers used for bedder planting for corn and lister planting for bean, a knife covering attachment, seed-firming wheels, interchangeable gears which are mechanical chain drives for 43 varying seeding rates driven by carrying wheel drives, two metal seed hoppers whose lower side walls’ slope can be adjust at a maximum level of 45 . A front wheel assist, Massey Ferguson tractor (MF-399) (ITM, Tabriz, Iran) with a maximum engine power of 81 kW was used for field test of intercropping machine. Moldboard plow was used for primary tillage and the depth of plowing was 25 cm. Next, by an offset disk harrow, the field was disked twice for pulverizing lumps, mulching the surface and firming the underneath soil to provide a smooth uniform seedbed. In this study, the common bean seed (var. Derakhshan) and corn hybrid seed (SC-704) with 93 and 83 percent of germination and 97 and 98 percent of purity, respectively, were used. This machine was operated in five different distance patterns between corn and bean seeds on each row: 55 mm and 215 mm in the first pattern, 85 mm and 185 mm in the second pattern, 110 mm and 150 mm in the third pattern, 130 mm and 120 mm in the fourth pattern, and 160 mm and 100 mm in the fifth pattern for corn and bean, respectively. For all patterns, the depth of planting for corn and bean seeds was chosen as 20, 40, and 60 mm. In addition, the forward speed was assumed to be constant (4 km h-1). By using split plots with three replicates and SAS software (2002), the results were analyzed. Results and DiscussionThe multiple index, miss index, precision index, and quality of feed index was evaluated. The analysis of variance for bean planting unit showed that difference distance between seeds and various planting depth were significantly higher for multiple index (P< 0.01), but their interactions were not significant (P 0.05). Also, with decreasing the seeds distances, the multiple index was increased (P< 0.05). Moreover, comparing the results of the average multiple index in different levels of planting depth indicated that the multiple index was decreased when at higher depths of planting (P< 0.05). The seeds distance and planting depth were significantly higher for miss index and quality of feed index (P< 0.01), but their interactions were not significant for either index (P> 0.05). The precision index was significant was affected by different levels of seeds distance (P< 0.05) and was higher for different levels of seeds planting depths (P< 0.01), but their interactions were not significant. In corn planting unit, the results showed that the different distances between seeds and planting depths were significantly higher for multiple index, miss index, quality of feed index, and precision index (P< 0.01). Also their interactions were significant for multiple index (P< 0.05), but the other indices showed no significant interactions (P> 0.05). ConclusionsThe data suggested a higher quality index once corn and bean were respectively plated at 160 and 215 mm seed distance with a planting depth of 60 mm being optimum for each corn and bean.