Design and Construction
S. Naderi Parizi; R. Alimardani; M. Soleimani; H. Mousazadeh
Abstract
IntroductionActivated carbon has a wide range of applications as a porous material in the liquid or gas phase adsorption process. The physical process of activated carbon production is divided into two stages thermal decomposition and activation. In this study, only the activation stage has been studied ...
Read More
IntroductionActivated carbon has a wide range of applications as a porous material in the liquid or gas phase adsorption process. The physical process of activated carbon production is divided into two stages thermal decomposition and activation. In this study, only the activation stage has been studied because it is very important in the properties of activated carbon being produced.The production of activated carbon from horticultural waste not only leads to cheap production and supply of many industrial and environmental necessities but also reduces the amount of the produced solid waste. Iran produces about 94,000 tons of pistachio husk annually, which is a good raw material for the production of activated carbon. The profitability index of activated carbon production in Iran is equal to 3.63, which in the case of export, the profitability index will be tripled.Studies have shown that temperature, period, and activation gas flow are the key factors affecting burn-off and iodine number during activated carbon production. Among the various activators tested, steam was found to be the most efficient, with the fastest activation time. For pistachio crops, the minimum iodine number required for economic efficiency is 600 mg g-1, while the highest specific surface area according to the BET test is 1062.2 m2 g-1.Materials and MethodsA Mannesmann tube made of 10 mm thick steel was used to construct the rotating reactor. To minimize heat loss during operation, the kiln body was insulated with a ceramic blanket capable of withstanding temperatures up to 1400°C. The kiln had a length and diameter of 190 cm and 48 cm, respectively, and operated at a temperature of 600°C, requiring approximately 25 kWh of energy for heating. CATIA V5 R21 software was employed to design the device, while ANSYS R20 software was used for thermal and mechanical analysis. The rotary reactor was identified as a critical component due to the high levels of thermal and mechanical stress it experiences. To address these issues, a thermal and fluid analysis was conducted, followed by a mechanical analysis using the results from the prior step. Subsequently, experimental tests were performed on the actual model, and the results were analyzed using statistical methods, including the T-student test in IBM SPSS software.The central heating unit and its surroundings were modeled using ANSYS CFX to obtain valuable information on fluid velocity, radiant properties, and heat transfer within the kiln and surrounding area at an operating temperature of 650°C. The analysis revealed uniform steam flow velocity between the kiln and the heating unit. To accommodate longitudinal expansion resulting from heat stress, taller rollers were employed to allow freedom of movement in that direction, while the lateral movement was unrestricted. This arrangement allows the reactor length to increase under varying temperatures. The reactor's end was designed with grooves and pressure plates, incorporating abrasion and compression plates made from refractory fibers to effectively seal the device. Furthermore, telescopic movement of the parts compensates for expansion effects.Results and DiscussionThe operating temperature of the system was gradually increased to reduce thermal stresses in the reactor shell. This led to a maximum increment in a longitudinal increase of 11.75 mm. Results from five sets of experimental tests and five software analyses demonstrated no significant differences between the experimental and analytical results at a significance level of 5%. Based on the thermal contour analysis, the thickness of the insulation layer was determined to be 5 cm. To control the operating temperature of the device, two methods were employed: adjusting the flame length of the burner and using different types of exhaust outlets. These measures effectively reduced thermal stress on the device.ConclusionThermal and mechanical analysis were useful methods for predicting heat distribution, thermal stresses, and potential dimensional changes in the activated carbon reactor. To compensate for possible alterations in the reactor's length and diameter, abrasive plates and friction washers were implemented. Careful control of fuel input to the burner and regulation of exhaust gas flow helped effectively reduce thermal stresses on the device.
Agricultural waste management
M. A. Ebrahimi-Nik; A. Rohani
Abstract
Introduction More than 40 percent of the world population is now dependent on biomass as their main source of energy for cooking. In Iran, the lack of access roads and inefficient transportation structure have made some societies to adopt biomass as the main energy source for cooking. In such societies, ...
Read More
Introduction More than 40 percent of the world population is now dependent on biomass as their main source of energy for cooking. In Iran, the lack of access roads and inefficient transportation structure have made some societies to adopt biomass as the main energy source for cooking. In such societies, inefficient traditional three-wall cook stoves (TCS) are the sole method of cooking with biomass, which corresponds to the large fuel consumption and smoke emission. Biomass gasifier cook stoves have been on the focus of many studies as a solution for such regions. In these stoves, biomass is pyrolized with the supply of primary air. The pyrolysis vapors are then mixed with secondary air in a combustion chamber where a clean flame forms. In this study, a biomass cook stove was manufactured and its performance was evaluated feeding with three kind of biomass wastes (e.g. almond shell, wood chips, and corn cob). Materials and Methods A natural draft semi-gasifier stove was manufactured based on the stove proposed by (Anderson et al., 2007). It had two concentric metal cylinders with two sets of primary and secondary air inlet holes. It had 305 mm height and 200 mm diameter. The stove was fed by wood chips, almond shell, and corn cob. Thermal performance of the stove was evaluated based on the standard for water boiling test. It consisted of three phases of cold start, hot start, and simmering. Time to boil, burning rate, and fire power was measured in minute. A “K” type thermocouple was used to measure the water temperature. Emission of carbon monoxide from the stove was measured in three situations (e.g. open area, kitchen without hood, and kitchen under hood) using CO meter (CO110, Thaiwan). Results and Discussion Neither particulate matter nor smoke was visually observed during the stove operation except at the final seconds when the stove was going to run out of fuel. The flame color was yellow and partly blue. The average time to boil was 15 min; not significantly longer than that of the LPG stove (13 min). Time to boil in hot phase was almost the same for all fuels which is not in line with the studies reported by (Kshirsagar and Kalamkar, 2014; Ochieng et al., 2013; Parmigiani et al., 2014). This is probably due to the stove body material. In fact, the hot phase test, aims to show the effect of the stove body temperature on the performance. In contrast with the most of the stoves, the one was used in the present study was made of a thin (0.3 mm) iron sheet which has a high heat transfer and low heat capacity. This results in a rapid increase in the stove body temperature up to its highest possible. The longest flaming duration (51 min) was observed by 350 g almond shell. Thermal efficiency on the other hand, was different in using different biomass fuels. The average thermal efficiency of 40.8 was achieved by the stove which is almost three times of open fire. The results from emission test showed that the average of carbon monoxide surrounding the operator in the case of open area, kitchen without hood, kitchen under hood, and traditional open fire were 4.7, 7.5, 5.2, and 430 ppm, respectively. Conclusion The amount of carbon monoxide emitted to the room is in accordance with the US National ambient air quality standards (NAAQS) hence, compared with traditional methods of cooking in deprived regions, the stove burns cleaner with higher efficiency. In order to prohibit respiratory decreases in housekeeping women, this stove could be disseminated in some deprived regions of Iran.
Modeling
M. Ostad Hoseini; A. Ghazanfari Moghaddam; H. Hashmipour-Rafsanjani; A. Ataei
Abstract
IntroductionThe lignocelluloses materials have high potential for producing various types of biofuels. These materials include various parts of plants, especially leaves and stems that are left without a specific usage after annual pruning. These residues can be used through slow or fast pyrolysis process ...
Read More
IntroductionThe lignocelluloses materials have high potential for producing various types of biofuels. These materials include various parts of plants, especially leaves and stems that are left without a specific usage after annual pruning. These residues can be used through slow or fast pyrolysis process for production of liquid and gaseous biofuels. The slow pyrolysis is taking place at temperatures below 500°C while fast pyrolysis process takes place at a temperature above 700°C. Various studies on production of biofuels from plant residues have shown that the temperature, heating rate and the resident time of pyrolysis process are the main factors that affect the final product quality. At present time, in Iran, there are more than 360 thousands hectares of pistachio growing fields which annually produce over 215 thousands metric tons residues which are mainly leaves and stems. The main objective of this study was to measure the heating properties of the powders prepared from the leaves and the stem of pistachio trees. These properties include higher heating value (HHV), lower heating value (LHV) and thermal gravimetric analysis (TGA) of the powders. Then the powders were separately pyrolysed and the kinetic of the pyrolysis process for producing charcoal from them was investigated. Materials and MethodsIn this research, leaves and stems of pistachio trees were initially analyzed to determine their chemical constituents including moisture content, volatile compounds, carbon (C), hydrogen (H), nitrogen (N), sulfur (S) and oxygen (O) content. Using these constituents the height heating value and low heating value for the leaves and the stems were determined. The thermal gravimetric analysis (TGA) of the powders was made to select a proper heating temperature for pyrolysis of the powders. In each experiment about 10 g of powder powders were pyrolyzed to produce char. Based on TGA results, the pyrolysis experiments were performed at 350, 400, 450 and 500°C with 30 minutes residence time. The instantaneous amount (in decimal) of the produced gas (M) and char (Ms) as a function of time (t) was modeled using the following equations: For each experiment B is a constant value and is represented by:Where Ea is the activation energy, R is universal gas constant, T is the temperature of the experiment and A is the pre-exponential constant. By having M or Ms at different times (t), the parameters of A, B and Ea were estimated using the curve fitting tool box of the MATLAB® software. Results and DiscussionThe results of chemical analysis indicated that the leaves powders contained 1.5% N, 42.1% C, 5.5% H, 0.4% S and 48.3% O while the stem samples contained 0.5% N, 46.5% C, 6.1% H, 0.2% S and 44.6% O. Higher amount of carbon and hydrogen in the stem leaves indicates that the stem should have higher energy content. In fact, the calculated high and low heating values for leaves were 17.23 and 16.03 MJ.kg-1, and for the stems were 18.91 and 17.59 MJ.kg-1, respectively which comply with the predicted results from chemical analysis of the powders. The TGA test results indicated that the initial weight loss took place up to 270°C for the stems powder and up to 220°C for leaves powders. This weight loss was due to loss of moisture and volatile compounds. The actual degradation temperature for the stem powders ranged from 300 to 500°C while for the leaves was from 350 to 600°C. The results of pyrolysis experiments indicated that the pyrolysis of stems took place faster than leaves. The pyrolysis time was 10 to 15 min for leaves and 5 to 10 min for stems. The resulting char for pyrolysis of stem was 30% and for stems were 40% of the original materials. The kinetic of pyrolysis was modeled using one-step global model for production of char and gas. The experimental data were fitted to the used model with high degrees of accuracy (R2>0.99). The model parameters, namely activation energy and frequency factors were 10.70 kJ.mol-1, and 0.047 s-1 for stems and 21.72 kJ.mol-1 and 0.312 s-1, respectively. ConclusionsIn general, both HHV and LHV of the stems were higher than those of leaves due to higher carbon content of the stems. The TG curves indicated the pyrolysis time of stems was shorter than that of leaves. The leaves yielded 40% char while the stem yielded 30%.