Agricultural waste management
H. Zaki Dizaji; N. Monjezi
Abstract
Introduction No use of advanced mechanization and weakness in post harvesting technology are the main reasons of agricultural losses. Some of these wastes (agricultural losses) are related to crop growing conditions in field and the remaining to processing of sugar in mill. The most useful priority setting ...
Read More
Introduction No use of advanced mechanization and weakness in post harvesting technology are the main reasons of agricultural losses. Some of these wastes (agricultural losses) are related to crop growing conditions in field and the remaining to processing of sugar in mill. The most useful priority setting methods for agricultural projects are the Analytic Hierarchy Process (AHP). So, this study presents an introduction of application manner of the AHP as a mostly common method of setting agricultural projects priorities. The purpose of this work is studying the sugarcane loss during production process using AHP in Khuzestan province. Materials and Methods The resources of sugarcane waste have been defined based on expert’s opinions. A questionnaire and personal interviews have formed the basis of this research. The study was applied to a panel of qualified informants made up of thirty-two experts. Those interviewed were distributed in Sugarcane Development and By-products Company in 2015-2016. Then, with using the analytical hierarchy process, a questionnaire was designed for defining the weight and importance of parameters effecting on sugarcane waste. For this method of evaluation, three main criteria considered, were yield criteria, cost criteria and income criteria. Criteria and prioritizing of them was done by questionnaire and interview with sophisticated experts. This technique determined and ranked the importance of sugarcane waste resources based on attributing relative weights to factors with respect to comments provided in the questionnaires. Analytical Hierarchy Process was done by using of software (Expert choice) and the inconsistency rate on expert judgments was investigated. Results and Discussion How to use agricultural implements and machinery during planting and harvesting of sugarcane, can increase or decrease the volume of waste. In planting period, the losses mainly consists of loss of setts during cutting them by machine, injury the setts by biological and physical agents, loss of growth in sett field, unsuitable sett covering and replanting the gaps. During cultivation period the losses include late in field harvesting and so late in regrows the cane, unsuitable ratooning and use of cultivator, varying the size of the furrows and ricks in around the field and destroyed the stubbles during rationing. In harvesting the losses easily seen and mainly associated by efficiency of harvester machines. Billets loss of the fleet in the transmission roads toward mill and late in harvest the burnet cane and then transport to mill are main sources of quantities and qualities of losses. The Expert Choice software performed well in conjunction with the panel of experts for choosing the criteria and assigning weights under the AHP methodology. According to the results, effective parameters on sugarcane waste consist of caused by harvesting, transportation, industry, planting, preserve operations, ratooning and land preparation. Weight of effective criteria (yield, cost and income) on losses of sugarcane obtained from paired comparison in the experts’ view which has been calculated with Expert choice software. The result of this survey by AHP techniques showed that yield criteria had the most and income criteria had the least importance for expert in sugarcane production. In this stage of research, alternatives of paired comparison relative to criteria was separately formed and information of questionnaire which relates to paired comparison of criteria was obtained. Between effective parameters on losses of sugarcane, harvesting with 0.243 weighted average was the most effective factor and transportation with 0.187 weighted average, industry with 0.179 weighted average, planting with 0.156 weighted average, preserve operations with 0.109 weighted average, ratooning with 0.071 weighted average, and land preparation with 0.055 weighted average was later, respectively (Inconsistence Rate =0.04). The results are examined by monitoring sensitivity analysis while changing the criteria priorities. Since different judgments are made on comparison of criteria, we use sensitivity analysis in order to provide stability and consistence of analysis. With increasing or decreasing of the criteria, we will conclude that ratio of other indices will not change. Conclusion This paper looks at AHP as a tool used in Sugarcane Agro-Industries to help in decision making. Results show that criteria studied in this research can help prioritizing of loss resources during sugarcane production process. According to the results, effective parameters on sugarcane waste consist of caused by harvesting, transportation, industry, planting, preserve operations, ratooning and land preparation.
N. Monjezi; M. J. Sheikhdavoodi; H. Zaki Dizaji; A. Marzban; M. Shomeili
Abstract
Introduction Planning and scheduling of farming mechanized operations is very important. If the operation is not performed on time, yield will be reduced. Also for sugarcane, any delay in crop planting and harvesting operations reduces the yield. The most useful priority setting method for agricultural ...
Read More
Introduction Planning and scheduling of farming mechanized operations is very important. If the operation is not performed on time, yield will be reduced. Also for sugarcane, any delay in crop planting and harvesting operations reduces the yield. The most useful priority setting method for agricultural projects is the analytic hierarchy process (AHP). So, this article presents an introductry application manner of the Analytical Hierarchy Process (AHP) as a mostly common method of setting agricultural projects priorities. Analytic Hierarchy process (AHP) is a decision making algorithm developed by Dr. Saatyin 1980. It has many applications as documented in Decision Support System literature. Currently, this technique is widely used in complicated management decision makings which AHP was preferred from other established methodologies as it does not demand prior knowledge of the utility function; it is based on a hierarchy of criteria and attributes reflecting the understanding of the problem, and finally, because it allows relative and absolute comparisons, thus making this method a very robust tool. The purpose of this research is to identify and prioritize the effective parameters on lack of timeliness of operations of sugarcane production using AHP in Khuzestan province of Iran. Materials and Methods The effective parameters effecting on lack of timeliness of operations have been defined based on expert’s opinions. A questionnaire and personal interviews have formed the basis of this research. The study was applied to a panel of qualified informants made up of fourteen experts. Those interviewed were distributed in Sugarcane Development and By-products Company in 2013-2014. Then, by using the Analytical hierarchy process, a questionnaire was designed for defining the weight and importance of parameters affecting on lack of timeliness of operations. For this method of evaluation, three main criteria considered were yield criteria, cost criteria and income criteria. Criterions and prioritizing of them was done by questionnaire and interview with sophisticated experts. This technique determined and ranked the importance of criteria affecting on lack of timeliness of operations based on attributing relative weights to factors with respect to comments provided in the questionnaires. By using of software (Expert choice) Analytical Hierarchy Process was done and the inconsistency rate on expert judgments was investigated. Expert Choice software (Expert Choice 1999) was applied to examine the structure of the proposed model and achieve synthesis/ graphical results considering inconsistency ratios. Results and Discussion The Expert Choice software performed well in conjunction with the panel of experts for choosing the criteria and assigning weights under the AHP methodology. According to results, effective parameters on lack of timeliness of operations of sugarcane production consist of delays caused by management, delays caused by human, delays caused by machine and delays caused by procedure (the production process).Weight of criteria effective factors (yield, cost and income) on lack of timeliness of operations obtained from paired comparison in the experts’ view which has been calculated with Expert choice software. The result of this survey by AHP techniques showed that cost criteria had the most and income criteria had the least importance for expert in sugarcane production. In this stage of research, alternatives paired comparison relative to criteria was separately formed and information of questionnaire which relates to paired comparison of criteria was obtained. Between effective parameters on lack of timeliness of operations, machine factors to 0.366 weighted average was the most effective factor and production process to 0.298 weighted average, management factors to 0.177 weighted average and human factors to 0.160 weighted average was later respectively (Inconsistence Rate =0.03). The results are examined by monitoring sensitivity analysis while changing the criteria priorities. Since different judgments are made on comparison of criteria, we use sensitivity analysis in order to provide stability and consistence of analysis. With increase or decrease of the criteria, we will conclude that ratio of other indices will not change. Conclusion The analytic hierarchy process, as developed by Saaty, has been successfully applied in recent research to cases of agricultural project. This paper looks at AHP as a tool used in Sugarcane Agro-Industries to help in decision making. Results showed that criteria studied in this research can help prioritizing the effective parameters on lack of timeliness of operations of sugarcane production. Cost criteria are the main criteria effective on lack of timeliness operations of sugarcane production. The most important factor is machine factor.
M. Sharifi; A. Akram; Sh. Rafiee; M. Sabzehparvar
Abstract
Alborz province with an area of about 5121.7 km2 has about 0.31% of the total area of the country. The total arable area of the province is about 48954 hectares. Water, land and capital are the most important factors for agricultural production. By understanding the subjective beliefs, decision-making ...
Read More
Alborz province with an area of about 5121.7 km2 has about 0.31% of the total area of the country. The total arable area of the province is about 48954 hectares. Water, land and capital are the most important factors for agricultural production. By understanding the subjective beliefs, decision-making criteria and economic incentives of local farmers, the priority of crops can be achieved with the maximum profitability of farmers and the least damage to the resources (water and land). The combination of Fuzzy Delphi techniques and methods of integrating analytical hierarchy process (AHP) can be an appropriate approach for achieving this goal. By employing the above combination of Fuzzy and AHP techniques, the priorities of the strategic agricultural crops in Alborz province achieved as wheat, barley, corn silage, alfalfa, cotton and canola, with final priority weighting factors of 0.496, 0.403, 0.354, 0.320, 0.183, and 0.090, respectively. By comparing the decision criteria it has been determined that the farmers prefer the amount of cultivation area, net income, production costs and livestock needs with the relative importance factors of 0.487, 0.410, 0.346 and 0.188, respectively. Among all prioritization criteria, the cultivated area had the highest priority. Water shortage, labor costs, lack of financial support, and governmental purchase allowance for wheat, were the main reasons for shifting the cultivated area towards wheat cultivation with total area of 14350 hectares.