با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

امواج‌ مایکرو ‌با‌ برخورد ‌به ‌مولکول‌های‌ آب، ‌ایجاد ‌گرما ‌در ‌جسم ‌می‌نمایند. به ‌کمک‌ نرم‌افزار کامسول ‌و ‌تعیین ‌برخی ‌پارامترهای ‌فیزیکی ‌و‌ مغناطیسی ‌چوب تنه ‌درخت ‌خرما، ‌در ‌آزمایشگاه ‌مواد،‌ دما‌ در ‌نقاط مختلف چوب تنه به‌دست آمد. در این‌ تحقیق، ‌سه ‌نقطه ‌در ‌مسیر ‌یکی ‌از ‌قطرهای ‌مکعب‌ چوبی در نظر گرفته شد ‌و‌ نمودار ‌درجه ‌حرارت‌- زمان ‌شبیه‌سازی‌ گردید.‌ سپس‌ یک ‌نمونه‌ از ‌قطعه ‌چوبی‌ با ‌همان ابعاد، در داخل محفظه ‌مایکروویو‌ با ‌فرکانس ‌GHz 45/2 تحت ‌امواج‌ مایکرو ‌قرار گرفت ‌و ‌به ‌کمک ‌یک‌ ترمومتر ‌دیجیتالی،‌ دما‌ در‌ نقاط ‌‌و ‌زمان‌های مشابه ثبت شد. داده‌های تجربی و شبیه‌سازی به کمک نرم‌افزار SPSS مقایسه شدند. نتایج تحلیل آماری نشان داد که ‌در‌ نقطه ‌1‌ (مرکز مکعب)، تفاوت در سطح 5 درصد ‌معنی‌دار‌ بوده‌ ولی ‌در ‌نقاط ‌2 (بالا ‌سمت ‌راست مکعب) ‌و‌ 3 (پایین ‌سمت ‌چپ ‌مکعب)،‌ تفاوت ‌معنی‌داری ‌در ‌سطح 5 ‌درصد ‌وجود‌ ندارد‌.‌ همچنین ‌با‌ مقایسه‌ میانگین‌ها‌ و‌ تحلیل ‌واریانس ‌مشخص‌ شد‌ که‌ اختلاف دما بین نقطه‌ 2‌ با ‌نقاط 1 و‌3‌ در ‌شبیه‌سازی ‌و‌ نتایج‌ تجربی‌ وجود‌ دارد. ‌این ‌نتیجه ‌نشان‌ می‌دهد ‌مدل‌ شبیه‌سازی‌ به‌ خوبی‌ دما‌ را‌ در ‌نقاط‌ مختلف ‌قطعه چوبی ‌پیش‌بینی ‌می‌کند. این ‌تحقیق ‌با ‌هدف ‌مبارزه ‌با ‌آفت‌ سوسک ‌سرخرطومی ‌خرما ‌به‌ کمک ‌مایکروویو ‌و‌ حذف ‌سموم‌ کشاورزی ‌انجام شده ‌است.

کلیدواژه‌ها

Al Shwear, M. S., and H. Remili. 2016. Three-Dimensional Simulation of Microwave Treatment of the Red Palm Weevil Insect. International Journal of Emerging Technology and Advanced Engineering 6: 115-123.
2. Clarke, R. 2012. Magnetic propertiesof materials. Available at: http://fa.wikipedia.org/wiki. Accessed October 31, 2012.
3. Curet, S., O. Rouaud, and L. Boillereaux. 2009. Effect of Sample Size on MicrowavePower Absorption Within DielectricMaterials: 2D Numerical Results vs.Closed-Form Expressions. American Institute of Chemical Engineers (AIChE Journal) 55: 1569-1584.
4. Eqra, N., Y. Ajabshirchi, M. Sarshar, and S. S. Alavi. 2015. Comparison of microwave and ozonolysis effect as pretreatment on sugarcane bagasse enzymatic hydrolysis. Journal of Agricultural Machinery 5 (1): 35-44. (In Farsi).
5. Farag, S., A. Sobhy, C. Akyel, J. Doucet, and J. Chaouki 2012. Temperature profile prediction within selected materials heated by microwaves at 2.45GHz. Journal of Applied Thermal Engineering 36: 360- 370.
6. Hajmohammadi, H., H. Sadrnia, and M. H. Abbaspourfard. 2013. Effect of Microwave Heating Treatment On Mortality Of Indian Meal Moth (PLODIA INTERPUNCTELLA) In Pistachio. Journal of Plant Protection (Agricultural Scienceand Technology) 27: 18-26. (In Farsi).
7. Hedayati, K., B. Emadi, M. Khojastehpour, and Sh. Beiraghi-Toosi. 2013. The Effect of Ultrasonic Waves on Sugar Extraction and Mechanical Properties of Sugar Beet. Journal of Agricultural Machinery 3 (2): 144-154.(In Farsi).
8. Massa, R., E. Caprio, M. D. Santis, R. Griffo, M. D. Migliore, G. Panariello, D. Pinchera, and P. Spigno. 2011. Microwave treatment for pest control: the case of Rhynchophorus ferrugineus in Phoenix canariensis. European and Mediterranean Plant Protection OrganizationBulletin 41: 128-135.
9. Massa, R., A. Greco, E. Caprio, G. Panariello, M. Donald Migliore, D. Pinchera, F. Schettino, and R. Griffo. 2015. Experimental Results on the Effectiveness of Microwave Treatment of Phoenix Canariensis PalmInfested by Rhynchophorus ferrugineus. International Conference on Environment and Electrical Engineering (IEEE), Mediterranean Microwave Symposium (MMS), Rome, Italy.
10. Mollazehi, S., and H. Sadrnia. 2016. Effect of Microwave Heating Treatment on Mortality on Date Red Palm Weevi l (Rhynchophorus Ferrugineus) For In chemical Combat. Iranian Journal of Biosystem Engineering 47: 93-102. (In Farsi).
11. Nelson, S. O. 1996. Review and Assessment of Radio Frequency and Microwave Energy for Stored Grain Insect Control. American Society of Agricultural Engineers 39: 1475-1485.
12. Rattanadecho, P. 2006. The simulation of microwave heating ofwood using a rectangularwaveguide: Influence of frequency and sample size. Chemical Engineering Science 61: 4798- 4812.
13. Robinson, J. P., C. E. Snape, S. W. Kingman, and H. Shang. 2008. Thermal desorption and pyrolysis of oil contaminated drillcuttings by microwave heating. Analytical and Applied Pyrolysis 81: 27- 33.
14. Salema, A. A., and M. T. Afzal. 2015. Numerical simulation of heating behaviour in biomass bed and pelletsunder multimode microwave system. International Journal of Thermal Sciences 91: 12-25.
15. Yakovlev, V. 2006. Examination of Contemporary Electromagnetic Software Capable of Modeling Problems of Microwave Heating. Pages 13 in Porada W, Ed M, eds. Advances in Microwave and Radio Frequency Processing.
16. Zhao, S., X. Cheng, S. Xing, and C. Qiu. 2007. A thermal lethal model of rice weevils subjectedto microwave irradiation. Journal of Stored Products Research 43: 430-435.
17. Zhao, X., L. Yan, and K. Huang. 2011. Advances in Induction and Microwave Heating of Mineral and Organic Materials. Pages 22 in Grundas S, ed. Review of Numerical Simulation of Microwave Heating Process, vol. 766. Rijeka, Croatia: InTech.
CAPTCHA Image