با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی بیوسیستم، دانشگاه فردوسی مشهد، مشهد، ایران

2 گروه مهندسی علوم خاک، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

از جمله سامانه‌هایی که در تهیه نقشه هدایت الکتریکی خاک مزارع به‌کار می‌روند، سامانه‌های مبتنی بر روش تماس مستقیم الکترود با خاک می‌باشند. در این تحقیق با علم به اینکه علاوه بر شوری پارامترهای فیزیکی و شیمیایی خاک نیز در هدایت‌پذیری الکتریکی خاک تاثیرگذارند، به کمک روش شبکه عصبی RBF در طرح آماری باکس- بنکن به بررسی تاثیر پارامترهای اثرگذار بر نتایج روش تماس مستقیم در اندازه­گیری هدایت الکتریکی ظاهری خاک پرداخته و مدلی جهت تخمین هدایت الکتریکی واقعی خاک با داشتن هدایت الکتریکی ظاهری، دما، درصد رطوبت و چگالی توده تعیین شد. اندازه‌گیری همزمان پارامترهای موثر می‌تواند مرحله کالیبراسیون را حذف کند. مدل شبکه عصبی به‌دست آمده توانست به‌خوبی با ضریب تبیین 99/0، ECe را تخمین بزند. ضمن بررسی الگوریتم‌های مختلف آموزش شبکه عصبی عملکرد الگوریتم آموزشی بیزین بهتر از سایر الگوریتم‌ها تشخیص داده شد. نتایج تحلیل حساسیت شبکه نشان داد به‌ترتیب متغیرهای ECa، رطوبت، دما و چگالی توده بیشترین تاثیر را در تخمین مقدار ECe خاک دارند، به‌طوری‌که با حذف آنها از مدل ضریب تبیین از 99/0 به‌ترتیب به 30/0، 35/0، 56/0 و 63/0 کاهش می‌یابد. پس از مرحله مدل‌سازی، مدل شبکه عصبی به‌دست آمده با یک گروه داده مزرعه‌ای مورد اعتبارسنجی قرار گرفت. نتایج اعتبارسنجی مدل ضریب تبیین 986/0 بین خروجی مدل و مقادیر ECe اندازه‌گیری شده در آزمایشگاه را نشان داد. بدین ترتیب با استفاده از این مدل ضمن اندازه‌گیری هم‌زمان پارامترهای ذکر شده همراه با هدایت الکتریکی می‌توان دقت سامانه‌های اندازه‌گیری هدایت الکتریکی ظاهری خاک در تخمین و تهیه نقشه‌های شوری خاک افزایش داد. همچنین با توجه به عدم نیاز به داده‌برداری مجدد جهت کالیبراسیون سامانه‌ها، استفاده از این مدل زمان تحلیل داده‌ها و هزینه تهیه نقشه هدایت الکتریکی خاک را کاهش می‌دهد.

کلیدواژه‌ها

موضوعات

1. ASTM Standard D1557. 2009. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort, ASTM International, West Conshohocken, PA, DOI: 10.1520/D1557-09.
2. Bai, W., L. Kong, and A. Guo. 2013. Effects of physical properties on electrical conductivity of compacted lateritic soil. Journal of Rock Mechanics and Geotechnical Engineering 5 (5): 406-411.
3. Baradaran Motie, J., M. H. Aghkhani, M. H. Abbaspour-fard, and A. Lakzian. 2010. Determining soil EC based on Wenner method with plate type probes as a component of precision farming, First international conference of soil and root relationship (LANDCON1005), 24-26 May 2010, Ardabil, Iran.
4. Baradaran Motie, J., M. H. Aghkhani, M. H. Abbaspour-fard, and A. lakzian. 2011. Design, Construction and Assessment of Soil Electrical Conductivity Mapper. Journal of Agricultural Machinery Engineering 1 (1): 25-33. (In Farsi).
5. Corwin, D. L., and S. M. Lesch. 2003. Application of Soil Electrical Conductivity to Precision Agriculture: Theory, Principles, and Guidelines. Agronomy Journal 95 (3): 455-471.
6. Ehsani, R., and M. Sullivan. 2002. Soil Electrical Conductivity (EC) Sensors. Ohio state university. Extension factsheet. Food, Agricultural and Biological Engineering, AEX-565-02.
7. Hartman, E., J. D. Keeler, and J. M Kowalski. 1990. Layered neural networks with Gaussian hidden units as universal approximations, Neural Computation 2 (2): 210-215.
8. Hashemi Nejad, Y., M. Gholami, and V. Soltani. 2012. Optimize water consumption through precise control of soil salinity in a lasting environment. Journal of Soil and Water Conservation 1 (3): 59-67. (In Farsi).
9. Kashi, H., S. Emamghoi zadeh, H. Ghorbani, and S. Hashemi. 2013. Estimation of Soil Infiltration in Agricultural and Pasture Lands using Artificial Neural Networks and Multiple Regressions. Quarterly Journal of Environmental Erosion Research 3: 19-34. (In Farsi).
10. Kelly, B. F. J. 1997. Electrical Properties of Sediments and the Geophysical Detection of Groundwater Contamination, The University of New South Wales Sydney.
11. Khanjani, T., M. Ataei, and P. Moallem. 2016. Wind Speed Prediction Based on Chaos Theory using RBF Neural Networks. Computational Intelligence in Electrical Engineering 7 (3): 87-96. (In Farsi).
12. Khazaii, M., S. H. Sadeghi, and S. K., Mirnia. 2013. Application of Artificial Neural Network and Regression Models in Sediment Yield in Plots Located in Disturbed and Undisturbed Plots in Educational and Research Forest Watershed of Tarbiat Modares University, Iran. Iranian Journal of Watershed Management Science and Engineering 7 (21): 13-20. (In Farsi).
13. Liaghat, A. 1993. Effect of clay type and clay content on moisture content and bulk soil electrical conductivity as measured using time domain reflectometry, Master of Science thesis, Department of agricultural engineering, macdonald campus of Mc-Gill University, Canada.
14. Lilienthal, H., Ch. Itter, J. Rogasik, and E. Schnug. 2005. Comparison of different geo-electric measurement techniques to detect in-field variability of soil parameter. LandbauforschungVölkenrode 55 (4): 237-243.
15. Loke, M. H., J. E. Chambers, D. F. Rucker, O. Kuras, and P. B. Wilkinson. 2013. Recent developments in the direct-current geoelectrical imaging method. Journal of Applied Geophysics 95: 135-156.
16. Lund, E. D., C. D. Christy, and P. E. Drummond. 1999. Practical applications of soil electrical conductivity mapping, 2nd European Conference on Precision Agriculture. July 1999.
17. Lund, E. D., C. D. Christy, and P. E. Drummond. 2000. Using yield and soil electrical conductivity (EC) maps to derive crop production performance information. In Proceedings of the 5th International Conference on Precision Agriculture, Bloomington, Minnesota, USA, 16-19 July, 2000 (pp. 1-10). American Society of Agronomy.
18. Mahrooghy, M., J. Aanstoos, R. A. Nobrega, K. Hasan, and N. H. Younan. 2016. A Neural Network Approach to Soil Electrical Conductivity Estimation on Earthen Levees Using Spaceborne X-band SAR Imagery. Photogrammetric Engineering & Remote Sensing 82 (7): 509-519.
19. Montgomery, Douglas C. Design and analysis of experiments. Hoboken, NJ: Wiley, 2009.
20. Nazari, P., Sh. Mahmoudi, and A. Pazira. 2017. Study of salinity changes in parts of Turkman Sahra lands using interpolation methods. Journal of Soil and Water Conservation 6 (3): 89-98. (In Farsi).
21. Olteanu, C., C. Turcu, F. Olteanu, S. Zamfira, G. Oltean, and B. Braun. 2008. Mechatronic system for measuring and tracking of maps concerning soil agro-productive parameters, 6th International DAAAM Baltic Conference Industrial Engineering 24-26 April 2008, Tallinn, Estonia.
22. Pan, L., V. I. Adamchuk, S. Prasher, R. Gebbers, R. S. Taylor, and M. Dabas. 2014. Vertical soil profiling using a galvanic contact resistivity scanning approach. Sensors 14 (7): 13243-13255.
23. Pfannkuch, H. O. 1972. On the Correlation of Electrical Conductivity Properties of Porous Systems with Viscous Flow Transport Coefficients in Fundamentals of Transport Phenomena in Porous Media. Developments in Soil Science 2: 42-54.
24. Phonphan, W., N. K. Tripathi, T. Tipdecho, and A. Eiumnoh. 2014. Modelling electrical conductivity of soil from backscattering coefficient of microwave remotely sensed data using artificial neural network. Geocarto International 29 (8): 842-859.
25. Rezae Arshad, R., Gh. Sayyad, M. Mazloom, M. Shorafa, and A. Jafarnejady. 2012. Comparison of Artificial Neural Networks and Regression Pedotransfer Functions for Predicting Saturated Hydraulic Conductivity in Soils of Khuzestan Province. Journal of Water and Soil Science 16 (60): 107-118. (In Farsi).
26. Rhoades, J. D., D. L. Corwin, and S. M. Lesch. 1999. Geospatial measurements of soil electrical conductivity to assess soil salinity and diffuse salt loading from irrigation. Assessment of non-point source pollution in the vadose zone: 197-215.
27. Rhoades, J. D., N. A. Manteghi, P. J. Shouse, and W. J. Alves. 1989. Soil electrical conductivity and soil salinity: New formulations and calibrations. Soil Science Society of America Journal 53 (2): 433-439.
28. Seifi, M. R., R. Alimardani, and A. Sharifi. 2010. Design and development of a portable soil electrical conductivity detector. Asian Journal of Agricultural Sciences 2 (4): 168-173.
29. Silva, P. L., and Z. Bassiouni. 1988. Hydrocarbon Saturation Equation in Shaly Sands According to the S-B Conductivity Model. SPE Formation Evaluation 3 (03): 503-509.
30. Sudduth, K. A., S. T. Drummond, and N. R. Kitchen. 2001. Accuracy issues in electromagnetic induction sensing of soil electrical conductivity for precision agriculture. Computers and Electronics in Agriculture 31 (3): 239-264.
31. Sudduth, K. A., N. R. Kitchen, G. A. Bollero, D. G. Bullock, and W. J. Wiebold. 2003. Comparison of electromagnetic induction and direct sensing of soil electrical conductivity. Agronomy Journal 95 (3): 472-482.
32. Sudduth, K. A., D. B. Myers, N. R. Kitchen, and S. T. Drummond. 2013. Modeling soil electrical conductivity–depth relationships with data from proximal and penetrating ECa sensors. Geoderma 199: 12-21.
33. Sudduth, K. S., J. W. Hummel, N. R. Kitchen, and S. T. Drummond. 2000. Evaluation of a soil conductivity sensing penetrometer. Presented at the 2000 ASAE Annual International Meeting, Paper No.00 1043, American Society of Agricultural Engineers. 2950 Niles Road, St. Joseph, MI 49085-9659, USA.
34. Toumelin, E., and C. Torres-Verdin. 2005. Influence of oil saturation and wettability on rock resistivity measurements: a uniform pore-scale approach. In SPWLA 46th Annual Logging Symposium. Society of Petrophysicists and Well-Log Analysts.
35. Waxman, M. H., and L. J. M. Smits. 1968. Electrical conductivities in oil-bearing shaly sands. Society of Petroleum Engineers Journal 8 (02): 107-122.
36. Wenner, F. 1915. A method for measuring earth resistivity. Journal of the Washington Academy of Sciences 5 (16): 561-563.
37. Zarif Neshat, S., A. Rohani, M. Etefagh, and M. H. Saedi Rad. 2012. Predictions of apple bruise volume by using RBF artificial neural network and comparison it with regression. Journal of Food Processing and Preservation 4 (2): 45-65. (In Farsi).
CAPTCHA Image