با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

بخش مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

چکیده

در راستای کاهش اصطکاک بین مواد دانه‌ای و سطح داخلی لوله‌های انتقال نیوماتیکی در فاز متراکم و افزایش دبی جرمی مواد، اقدام به ایجاد شیارهای مارپیچ درون لوله‌های انتقال به منظور تشکیل بالشتک هوا گردید. بدین منظور دستگاه خان‌کشی ساخته شد. عملکرد واحد آزمایشی مجهز به این لوله‌ها در حین انتقال ماش بررسی گردید. تیمارهای اعمال شده چهار سطح عمق شیار (0، 35/0، 55/0 و 90/0 میلی‌متر)، سه سطح فشار هوای ورودی (1، 2 و 3 بار) و سه سطح طول انتقال لوله (3، 6 و 9 متر) بودند. آزمایش‌ها به‌صورت فاکتوریل بر پایه‌ی طرح کاملاً تصادفی و در سه تکرار انجام شدند. تجزیه‌ی واریانس نشان داد عمق شیار، فشار هوا و طول لوله تاثیر معناداری بر دبی جرمی ماش و تغییرات ضریب اصطکاک در سطح احتمال یک درصد داشته‌اند. به‌علاوه بیش‌ترین دبی جرمی و کم‌ترین ضریب اصطکاک در شرایط طول 3 متر، عمق شیار 9/0 میلی‌متر و فشار هوای 3 بار رخ داده است. از طرفی کم‌ترین دبی جرمی و بیش‌ترین ضریب اصطکاک در شرایط طول 9 متر، لوله‌ی بدون شیار داخلی و فشار هوای 1 بار رخ داده است. عمق بهینه‌ی شیار برای دسترسی به کمینه‌ی ضریب اصطکاک، 35/0 میلی‌متر پیشنهاد شد. هم‌چنین لوله‌های شیاردار به طول 9 متر و فشار هوای 1 و 2 بار بهترین عملکرد انتقال جرمی بر مبنای کمینه‌ی ضریب اصطکاک را نشان دادند. در شرایط یکسان و در مقایسه با طرح لوله‌های شیاردار با مقطع ذوزنقه، ضریب اصطکاک مواد به‌طور متوسط 65 درصد کاهش پیدا کرد.

کلیدواژه‌ها

1. ASABE Standards, 2008. S352.2: Moisture Measurement- Unground Grain and Seeds. ASABE, St. Joseph, MI.
2. British Standards Institution, 1964. Methods for the Measurement of Fluid Flow in Pipes. Part 1, Orifice Plates, Nozzles and Venture Tubes. B. S. 1042. Park St, London.
3. Cenna, A. A., K. C. Williams, M. G. Jones, and W. Robinson. 2011. Analysis of Wear Mechanisms in Pneumatic Conveying Pipelines of Fly Ash. PP 539- 547 in J. Lee, J. Ni, J. Sarangapani and J. Mathew eds. Engineering Asset Management. Springer. London.
4. Guner, M. 2007. Pneumatic conveying characteristics of some agricultural seeds. Journal of Food Engineering 80: 904-913.
5. Imanmehr, A., B. Ghobadian, S. Minaei, and M. H. Khoshtaghaza. 2008. Design, Construction and Evaluation of a Canola Seed Pneumatic Conveyor in the Dilute Phase. Journal of Agricultural Engineering Research 8 (4): 33-46. (In Farsi).
6. International Standard, 2003. Iso 5167-2: Measurement of fluid flow by means of pressure differential devices inserted in circular-cross section conduits running full- Part 2: Orifice plates. Switzerland.
7. Jafari, J. F. 1976. Characteristics of dense phase pneumatic transport of grains in horizontal pipes. National College of Agricultural Engineering, Silsoe. UK.
8. Jafari, J. F., B. Clarke, and J. Dyson 1981. Characteristics of dense phase pneumatic transport of grains in horizontal pipes. Powder Technology 28: 195-199.
9. Jones, M. G., and K. C. Williams. 2003. Solids friction factors for fluidized dense- phase conveying. Particulate Science and Technology 21: 45-56.
10. Jones, M. G., B. Chen, K. C. Williams, A. A. Cenna, and Y. Wang. 2012. High Speed Visualization of Pneumatic Conveying of Materials in Bypass System. Advanced Materials Research 508: 6-10.
11. Karparvarfard, S. H. 1997. Characteristics of dense phase pneumatic transport of grains in horizontal pipes having internal air passage slots. Faculty of Agriculture. Tarbiat Modarres University, Tehran. (In Farsi).
12. Karparvarfard, S. H., and A. Vakili Farahani. 2010. An experimental correlation for friction factor in horizontal pipe with trapezoidal section inner longitudinal slots for conveying of solids. Iranian Journal of Chemistry and Chemical Engineering 29 (1): 83- 91.
13. Keep, T., and S. Noble. 2015. Optical flow profiling method for visualization and evaluation of flow disturbances in agricultural pneumatic conveyance system. Computer and Electronics in Agriculture 118: 159-166.
14. Klinzing, G. E., F. Rizk, R. Marcus, and L. S. Leung. 2010. Pneumatic Conveying of Solids. A Theoretical and Practical Approach. Springer. New York.
15. Mills, D., M. J. Jones, and V. K. Agarwal. 2004. Handbook of Pneumatic Conveying Engineering. Marcell Dekker, Inc. New York.
16. Mills, D. 2016. Pneumatic Conveying Design Guide. Elsevier. Amsterdam.
17. Mohsenin, N. N. 1980. Physical properties of plant and animal materials. Gordon Breach Sci. Press, New York, USA.
18. Nefedov, N., and K. Osipov.1987. Typical Examples and Problems in Metal Cutting and Tool Design. Mir publishers, Moscow.
19. Raheman, H., and V. K. Jindal. 2001. Solid velocity estimation in vertical pneumatic conveying of agricultural grains. Applied Engineering in Agriculture 17 (2): 209-214.
20. Raoufat, M. H., and B. Clarke. 1998. Design and development of a packed- bed continuous pneumatic conveyor. Journal of Agricultural Engineering Research 71: 363-371.
21. Rinoshika, A., F. Yan, and M. Kikuchi. 2012. Experimental study on particle fluctuation velocity of a horizontal pneumatic conveying near the minimum conveying velocity. International Journal of Multiphase Flow 40: 126-135.
22. Wen, C. Y., and H. P. Simons. 1959. Flow characteristics in horizontal fluidized solids transport. Journal of the American Institution of Chemical Engineers 5: 263-267.
23. Wypych, P. W., and J. Yi. 2003. Minimum transport boundary for horizontal dense- phase pneumatic conveying of granular materials. Powder Technology 129: 111-121.
24. Zareei, A., R. Farrokhi Teimourlou, L. Naderloo, S. M. H. Komarizade Asl. 2017. Study and modeling of changes in volumetric efficiency of helix conveyors at different rotational speeds and inclination angels by ANFIS and statistical methods. Journal of Agricultural Machinery 7 (1): 234- 246. (In Farsi).
CAPTCHA Image