##plugins.themes.bootstrap3.article.main##

حدیث بی آبی سامان آبدانان مهدی زاده محمدرضا صالحی سلمی

چکیده

تشخیص خودکار و به‌موقع بیماری‌های گیاهی، یک موضوع اساسی در نظارت و تولید محصولات سالم و باکیفیت است. لذا طراحی و توسعه روشی سریع، خودکار، ارزان و دقیق به‌منظور تشخیص بیماری گیاهان در مراحل اولیه از اهمیت به‌سزایی برخوردار است. در این پژوهش تصاویر از 40 لیلیوم آلوده به بیماری آتشک و 40 گیاه سالم توسط دوربین دیجیتال اخذ و پس از تقسیم‌بندی تصاویر تعداد 9 ویژگی رنگی از سه کانال RGB، Lab و HSV از ساقه و برگ گیاه و همچنین یک ویژگی مورفولوژیکی (طول ساقه) از گیاه استخراج شد. با اعمال الگوریتم پرچین‌های زبانی طی 100 هزار تکرار موثرترین این ویژگی‌ها (L برگ، L ساقه، a برگ، b برگ، H برگ، b ساقه، H ساقه، V برگ و طول ساقه) انتخاب و به‌وسیله خوشه‌بند k-means گروه‌بندی شدند. در نهایت نشان داده شد که دقت خوشه‌بند برای دو گونه بیمار، سالم و دقت کلی به‌ترتیب برابر با 42/96 و 100 و 63/97 درصد به‌دست آمد.

جزئیات مقاله

کلمات کلیدی

الگوریتم پرچین‌های زبانی, پردازش تصویر, تشخیص بیماری گیاه, سلامت گیاه لیلیوم

مراجع
1. Agrios, G. N. 2006. Plant Pathology, fifth ed. Academic Press, p. 952. ISBN: 9780120445653.
2. Al-Hiary, H., S. Bani-Ahmad, M. Reyalat, M. Braik and Z. ALRahamneh. 2011. Fast and Accurate Detection and Classification of Plant Diseases. International Journal of Computer Applications 17 (1): 31-38.
3. Arivazhagan, S., R. N. Shebiah, S. Ananthi, and S. V. Varthini. 2013. Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features, Agricultural Engineering International: CIGR Journal 15 (1): 211-217.
4. Barbedo, J. G. A., L. V. Koenigkan, and T. T. Santos. 2016. Identifying multiple plant diseases using digital image processing, Biosystems Engineering 147: 104-116.
5. Brosnan, T., and Sun, D. W. 2003. Influence of Modulated Vacuum Cooling on the Cooling Rate, Mass Loss and Vase Life of Cut Lily Flowers, Biosystems Engineering 86 (1): 45-49.
6. Cao, X., B. Ning, P. Yan, and X. Li. 2012. Selecting key poses on manifold for pair-wise action recognition, Industrial Informatics, IEEE Transactions 8 (1): 168-177.
7. Cetisli, B. 2010. The effect of linguistic hedges on feature selection: Part 2. Expert Systems with Applications 37 (8): 6102-6108.
8. Chaudhary, P., A. K. Chaudhari, A. N. Cheeran, and S. Godara. 2012. Color transform based approach for disease spot detection on plant leaf, International Journal of Computer Science and Telecommunications 3 (6): 65-70.
9. Cui, D., Q. Zhang, M. Li, Y. Zhao, and G. L. Hartman. 2009. Detection of soybean rust using a multispectral image sensor, Sensing and Instrumentation for Food Quality and Safety 3 (1): 49-56.
10. Gonzalez-Andujar, J. L., C. Fernandez-Quintanilla, J. Izquierdo, and J. M. Urbano. 2006. SIMCE: an expert system for seedling weed identification in cereals, Computers and Electronics in Agriculture 54 (2): 115-123.
11. Jamalizavareh, A. H., A. Sharifi Tehrani, Gh. A. Hejarood, S. J. Zad, M. Mohammadi, and Kh. Talebi Jahromi. 2003. An Investigation of the Effectiveness of Acibenzolar– S –Methyl for the Control of Cucumber Powdery Mildew. Iranian Journal of Agriculture Science 35 (2): 285-292. (In Farsi).
12. Johannes, A., A. Picon, A. Alvarez-Gila, J. Echazarra, S. Rodriguez-Vaamonde, A. D. Navajas, and A. Ortiz-Barredo. 2017. Automatic plant disease diagnosis using mobile capture devices, applied on a wheat use case. Computers and Electronics in Agriculture 138: 200-209.
13. Kanungo, T., D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu. 2002. An efficient k-means clustering algorithm: Analysis and implementation, Pattern Analysis and Machine Intelligence, IEEE Transactions 24 (7): 881-892.
14. Lucas, B. G., C. L. Campbell, and L. T. Lucas. 1992. Introduction to Plant Diseases, Identification and Management. Van Nostrand Reinhold, U.S.
15. Mansingh, G., H. Reichgelt, and K. M. O. Bryson. 2007. CPEST: an expert system for the management of pests and diseases, in the Jamaican coffee industry. Expert System Application 32 (1): 184-192.
16. Naik, M. R., and C. M. R. Sivappagari. 2016. Plant Leaf and Disease Detection by Using HSV Features and SVM Classifier, International Journal of Engineering Science 3794.
17. Oerke, E. C., U. Steiner, H. W. Dehne, and M. Lindenthal. 2006. Thermal imaging of cucumber leaves affected by downy mildew and environmental conditions, Journal of Experimental Botany 57 (9): 2121-2132.
18. Omrani, E., B. Khoshnevisan, S. Shamshirband, H. Saboohi, N. B. Anuar, and M. H. N. M. Nasir. 2014. Potential of radial basis function-based support vector regression for apple disease detection. Measurement 55: 512-519.
19. Payman, S. H., A. Bakhshipour Ziaratgahi, and A. Jafari. 2016. Exploring the possibility of using digital image processing technique to detect diseases of rice leaf. Journal of Agricultural Machinery 6 (1): 69-79. (In Farsi).
20. Rouzegar, M. R., and M. R. Golzarian. 2015. The application of image processing to detect and classify diseases of plants and fruits, 2nd National conference of Modern Topic in Agriculture, Tehran, Iran, 9-17. (In Farsi).
21. Sankaran, S., A. Mishra, R. Ehsani, and C. Davis. 2010. A review of advanced techniques for detecting plant diseases, Computers and Electronics in Agriculture 72 (1): 1-13.
22. Tang, J., D. Wang, Z. Zhang, L. He, J. Xin, and Y. Xu. 2017. Weed identification based on K-means feature learning combined with convolutional neural network, Computers and Electronics in Agriculture 135: 63-70.
23. Weizheng, S., W. Yachun, C. Zhanliang, and W. Hongda. 2008. December. Grading method of leaf spot disease based on image processing, in 2008 international conference on computer science and software engineering, 491-494. IEEE.
24. Zeller, W. 2004. Studies on induced resistance against Fire Blight (E. amylovora) with different bioagents. Abstract book of 10th int. Workshop on Fire Blight. Biolognaltaly. P. 56.
25. Zhuang, S., P. Wang, B. Jiang, M. Li, and Z. Gong. 2017. Early detection of water stress in maize based on digital images, Computers and Electronics in Agriculture 140: 461-468.
ارجاع به مقاله
بی آبیح., آبدانان مهدی زادهس., & صالحی سلمیم. (2019). امکان‌سنجی تشخیص برخط بیماری آتشک در گیاه لیلیوم به کمک سامانه ماشین بینایی و خوشه‌بندی K-means. ماشین‌های کشاورزی, 11(2), 277-291. https://doi.org/10.22067/jam.v11i2.77237
نوع مقاله
مقاله علمی- پژوهشی