با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

بخش مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران

چکیده

ساقه نی به‌دلیل سبک و قوی بودن، از دیرباز در امور صنعتی و ساختمانی مورد استفاده بوده است و اخیراً، با توجه به گرایش به مصالح ساختمانی سبز، این محصول از دیدگاه علمی نیز مورد توجه صاحبان صنایع و پژوهشگران زیست‌محیطی قرار گرفته است. در این پژوهش به‌منظور استفاده بهتر و کاربردی‌تر از نی، خصوصیات مکانیکی و خزشی ساقه نی تحت تأثیر رطوبت و تعداد گره اندازه‌گیری شد. آزمایش‌ها بر اساس روش فاکتوریل دو عاملی و هر عامل در سه سطح بر پایه طرح کامل تصادفی انجام شد. بدین منظور ساقه نی در سه دسته دو، چهار و شش گره در سه سطح رطوبتی 30، 40 و 50 درصد دسته‌بندی و خصوصیات مکانیکی آن‌ها شامل مدول الاستیک، چغرمگی و نقطه تسلیم با استفاده از دستگاه اینسترون اندازه‌گیری، تجزیه و تحلیل شد. نتایج نشان داد که مدول الاستیک، نقطه تسلیم و چغرمگی تحت تأثیر رطوبت و تعداد گره در سطح 0.01 قرار داشتند. آزمون خزش ساقه‌ها با آویزان کردن وزنه 10 کیلوگرمی روی نمونه‌ها انجام شد. نتایج نشان داد که مقدار خیز و زمان نهایی در سطوح رطوبتی و تعداد گره اثر معنی‌دار دارند ولی دارای اثر متقابل نیستند. داده‌های خزشی (کرنش خمشی-زمان) به مدل برگر با تعداد المان مختلف (سه تا شش المانه) تعمیم داده شد و مشخص گردید که مدل پنج المانه به‌خوبی (R2>0.97) بیانگر رفتار خزشی ساقه نی هست.

کلیدواژه‌ها

Open Access

©2020 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

1. Ahmad, M., and F. Kamke. 2005. Analysis of Calcutta bamboo for structural composite materials: physical and mechanical properties. Wood Science and Technology 39: 448-459.
2. Allen, H. G. 2013. Analysis and Design of Structural Sandwich Panels: The Commonwealth and International Library: Structures and Solid Body Mechanics Division. Elsevier.
3. Chung, K., and W. Yu. 2002. Mechanical properties of structural bamboo for bamboo scaffoldings. Engineering Structures 24: 429-442.
4. Diehl, K., and D. Hamann. 1980. Relationship between sensory profile parameters and fundamental mechanical parameters for raw potatoes. Journal of Texture Studies 10: 401-420.
5. Esehaghbeygi, A., B. Hoseinzadeh, M. Khazaei, and A. Masoumi. 2009. Bending and shearing properties of wheat stem of alvand variety. World Applied Sciences Journal 6: 1028-1032.
6. Galedar, M. N., A. Tabatabaeefar, A. Jafari, A. Sharifi, and S. Rafiee. 2008. Bending and shearing characteristics of alfalfa stems. Agricultural Engineering International: CIGR Journal.
7. Gottron, J., K. A. Harries, and Q. Xu. 2014. Creep behaviour of bamboo. Construction and Building Materials 66: 79-88.
8. Hering, S., and P. Niemz. 2012. Moisture-dependent, viscoelastic creep of European beech wood in longitudinal direction. European Journal of Wood and Wood Products 70: 667-670.
9. Hernandez-Estrada, Z., J. Figueroa, P. Rayas-Duarte, and R. Peña. 2012. Viscoelastic characterization of glutenins in wheat kernels measured by creep tests. Journal of Food Engineering 113: 19-26.
10. Hoseinzadeh, B., and A. Shirneshan. 2012. Bending and shearing characteristics of canola stem. American-Eurasian journal of agricultural & environmental sciences 12: 275-281.
11. Jakovljević, S., and D. Lisjak. 2019. Investigation into the effects of humidity on the mechanical and physical properties of bamboo. Construction and Building Materials 194: 386-396.
12. Lam, P., S. Sokhansanj, X. Bi, C. Lim, L. Naimi, M. Hoque, S. Mani, A. R. Womac, S. Narayan, and X. Ye. 2008. Bulk density of wet and dry wheat straw and switchgrass particles. Applied Engineering in Agriculture 24: 351-358.
13. Lord Jr, A. E. 2003. Viscoelasticity of the giant reed material Arundo donax. Wood Science and Technology 37: 177-188.
14. Lowe, S., M. Browne, S. Boudjelas, and M. De Poorter. 2000. 100 of the world's worst invasive alien species: a selection from the global invasive species database. Invasive Species Specialist Group Auckland,, New Zealand.
15. Nadim, Z., and E. Ahmadi. 2016. Rheological properties of strawberry fruit coating with methylcellulose. Journal of Agricultural Machinery 6: 153-162.in farsi
16. Nikrai, J., S. K. Najafi, and G. Ebrahimi. 2010. A comparative study on creep behavior of wood flour-polypropylene composite, medium density fiberboard (MDF) and particleboard. Science and Technology 22: 363-371.
17. Obataya, E., P. Kitin, and H. Yamauchi. 2007. Bending characteristics of bamboo (Phyllostachys pubescens) with respect to its fiber–foam composite structure. Wood Science and Technology 41: 385-400.
18. Oka, G. M., A. Triwiyono, A. Awaludin, and S. Siswosukarto. 2014. Effects of node, internode and height position on the mechanical properties of Gigantochloa atroviolacea bamboo. Procedia Engineering 95: 31-37.
19. Spatz, H.-C., H. Beismann, A. Emanns, and T. Speck. 1995. Mechanical anisotropy and inhomogeneity in the tissues comprising the hollow stem of the giant reed Arundo donax. Biomimetics (USA).
20. Spatz, H.-C., H. Beismann, F. Brüchert, A. Emanns, and T. Speck. 1997. Biomechanics of the giant reed Arundo donax. Philosophical Transactions of the Royal Society B: Biological Sciences 352: 1-10.
21. Tagne, N. S., D. Ndapeu, D. Nkemaja, G. Tchemou, D. Fokwa, W. Huisken, E. Njeugna, M. Fogue, J.-Y. Drean, and O. Harzallah. 2018. Study of the viscoelastic behaviour of the Raffia vinifera fibres. Industrial Crops and Products 124: 572-581.
22. Xu, Y.-L., S.-B. Xiong, Y.-B. Li, and S.-M. Zhao. 2008. Study on creep properties of indica rice gel. Journal of Food Engineering 86: 10-16.
23. Zhong-Zhen, S., J. Huan-Xin, C. He-Ping, Y. Qiu-Sheng, L. Li-Xin, W. Li, and C. Guo-Lin. 2013. The Viscoelasticity Model of Corn Straw under the Different Moisture Contents. Mathematical Problems in Engineering.
CAPTCHA Image