با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی علوم و صنایع غذایی، واحد سنندج، دانشگاه آزاد اسلامی، سنندج، ایران

2 گروه مهندسی ماشین‌های کشاورزی، واحد سنندج، دانشگاه آزاد اسلامی، سنندج، ایران

چکیده

توت‌فرنگی به‌دلیل داشتن آنتی‌اکسیدان‌های طبیعی و ریز مغذی‌ها نقش مهمی را در سلامت انسان ایفا می‌کند. تقاضا برای افزایش زمان نگهداری، کاهش سرعت فرآیند‌های میکروبی، کاهش وزن و حجم محصولات و در نهایت صادرات، خشک کردن این محصول ارزشمند را حائز اهمیت می‌نماید. یکی از روش‌های جدید خشک کردن استفاده از هوای جت برخوردی است که با کاهش زمان خشک شدن باعث افزایش کیفیت محصول نهایی از جمله تغییر رنگ پایین و ظرفیت آبگیری بالا می‌گردد. در این تحقیق از خشک‌کن جت برخوردی با قابلیت تنظیم دما و سرعت هوا و نسبت فاصله نازل تا سطح محصول به قطر نازل استفاده گردید. آزمایش‌های خشک کردن برگه‌ها به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی با دو متغیر شامل دمای هوا در سه سطح 45، 55 و 65 درجه سلسیوس و سرعت هوای خروجی از نازل‌ها در سه سطح 6، 9 و 12 متر بر ثانیه و طرح یک متغیره برای بررسی تاثیر نسبت فاصله نازل تا سطح محصول به قطر نازل در سطوح 4، 5، 6، 7 و 8 انجام شد. نتایج نشان داد که متغیرهای دما و سرعت هوا بیشترین تاثیر و نسبت فاصله نازل تا سطح محصول به قطر نازل کمترین تاثیر را بر مدت زمان خشک شدن داشتند. همچنین تاثیر دمای هوا بر نرخ خشک شدن بیشتر از سرعت هوا بود و با افزایش نسبت فاصله نازل تا سطح محصول به قطر نازل، سرعت خشک شدن برگه‌ها کمتر شد. از دیگر نتایج تحقیق افزایش ضریب انتشار موثر همراه با افزایش دما و سرعت هوا است. مقدار ضریب نفوذ موثر از 10-10×62/1 تا 10-10×24/3 متر مربع بر ثانیه تغییر کرد و انرژی فعال‌سازی 8/12 تا 7/16 کیلوژول بر مول تعیین شد. نتایج مدل‌سازی ریاضی نشان داد که مدل وانگ و سینگ به دلیل داشتن کمترین ریشه میانگین مربعات خطا (RMSE=0.02) و بیشترین ضریب تبیین (0.996= R2) مدل مناسبی برای پیش‌بینی رطوبت خشک کردن می‌باشد. همچنین مشاهده شد که افزایش دما و سرعت هوای خروجی باعث کاهش نسبت آبگیری مجدد نمونه‌های خشک شده توت‌فرنگی شده و افزایش H/D افزایش آن را به دنبال داشته است. تحلیل آزمایش‌های تغییر رنگ نمونه‌ها نیز نشان داد که افزایش دما و سرعت هوا میزان تغییر رنگ را کاهش و بالا رفتن نسبت H/D مقدار آن را افزایش داده است.

کلیدواژه‌ها

Open Access

©2021 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

1. Alnak, D. E., and K. Karabulut. 2018. Analysis of heat and mass transfer of the different moist object geometries with air slot jet impinging for forced convection drying. Thermal Science 22: 2943-2953.
2. Alonzo-Macias, M., A. Cardador-Martinez, S. Mounir, G. Montejano-Gaitan, and K. Allaf. 2013. Comparative study of the effects of drying methods on antioxidant activity of dried strawberry (Fragaria Var. Camarosa). Journal of Food Research 2: 92.
3. Banooni, S., S. M. Hosseinalipour, A. S. Mujumdar, P. Taherkhani, and M. Bahiraei. 2009. Baking of flat bread in an impingement oven: modeling and optimization. Drying Technology 27: 103-112.
4. Caixeta, A. T., R. G. Moreira, and M. E. Castell-Perez. 2002. Impingement drying of potato chips. Journal of Food Process Engineering 25: 63-90
5. Chakroun, W. M., A. A. Abdel-Rahman, and S. F. Al-Fahed, 1998. Heat transfer augmentation for air jet impinged on a rough surface. Applied Thermal Engineering 18 (12): 1225-1241.
6. Cunningham, S., W. Mcminn, T. Magee, and P. Richardson. 2008. Experimental study of rehydration kinetics of potato cylinders. Food and Bioproducts Processing 86: 15-24.
7. Dikbasan, T. 2007. Determination of effective parameters for drying of apples. Izmir Institute of Technology.
8. Doymaz, I. 2004. Effect of pre-treatments using potassium metabisulphide and alkaline ethyl oleate on the drying kinetics of apricots. Biosystems Engineering 89: 281-287.
9. Doymaz, I. 2008. Convective drying kinetics of strawberry. Chemiacal. Engineering and Processing 47: 914-919.
10. Giampieri, F., T. Y. Forbes-Hernandez, M. Gasparrini, J. M. Alvarez-Suarez, S. Afrin, S. Bompadre, J. L. Quiles, B. Mezzetti, and M. Battino. 2015. Strawberry as a health promoter: an evidence based review. Food & Function 6: 1386-1398.
11. Hafezi, N., M. J. Sheikhdavoodi, S. M. Sajadiye, and M. E. Khorasani Ferdavani. 2016. The study of some physical properties and energy aspects of potatoes drying process by the infrared-vacuum method. Journal of Agricultural Machinery 6 (2): 463-475. (In Farsi).
12. Hassan-Beygi, S., M. Aghbashlo, M. Kianmehr, and J. Massah. 2009. Drying characteristics of walnut (Juglans regia L.) during convection drying. International Agrophysics 23: 129-135.
13. Huang, D., W. Li, H. Shao, A. Gao, and X. H. Yang. 2017. Colour, texture, microstructure and nutrient retention of Kiwifruit slices subjected to combined air-impingement jet drying and freeze drying. International Journal of Food Engineering 13 (7). https://doi.org/10.1515/ijfe-2016-0344.
14. Khodabakhsh, S., A. R. Yousefi, M. Mohebbi, S. M. A. Razavi, A. Orooji, and M. R. Akbarzadeh-Totonchi. 2015. Modeling for drying kinetics of papaya fruit using fuzzy logic table look-up scheme. International Food Research Journal 22: 1234-1239.
15. Johnson, A. C., and E. M. A. Almukhaini. 2016. Drying studies on peach and strawberry slices. Cogent Food & Agriculture 2: 1-9
16. Lee, G. H., and F. H. Hsieh. 2008. Thin layer drying kinetics of strawberry fruit leather. Transactions of the ASABE 51:1699-1705.
17. Lee, J., Z. Ren, P. Ligrani, D. H. Lee, M. D. Fox, and H. K. Moon. 2014. Cross-flow effects on impingement array heat transfer with varying jet-to-target plate distance and hole spacing. International Journal of Heat and Mass Transfer 75: 534-544.
18. Li, W., L. Yuan, X. Xiao, and X. Yang .2016. Dehydration of kiwifruit (Actinidia deliciosa) slices using heat pipe combined with impingement technology. International Journal of Food Engineering 12: 265-276.
19. Li, W., M. Wang, X. Xiao, B. Zhang, and X. Yang. 2015. Effects of air-impingement jet drying on drying kinetics, nutrient retention and rehydration characteristics of Onion (Allium cepa) slices. International Journal of Food Engineering 11: 435-446.
20. Li, X. D., M. Alamir, E. Witrant, G. Della-Valle, O. Rouaud, L. Boillereaux, and, C. Josset. 2013. Further investigations on energy saving by jet impingement in bread baking process. 5th Symposium on System Structure and Control, 696-701, Grenoble, France, February 4-6: 2013
21. Lopez‐Quiroga, E., V. Prosapio, P. J. Fryer, I. T. Norton, and S. Bakalis. 2019. Model discrimination for drying and rehydration kinetics of freeze‐dried tomatoes. Food Process Engineering: e13192.
22. Madamba, P. S., R. H. Driscoll, and K. A. Buckle. 1996. The thin-layer drying characteristics of garlic slices. Journal of Food Engineering 29: 75-97.
23. Midilli, A., H. Kucuk, and Z. Yapar. 2002. A new model for single-layer drying. Drying technology 20: 1503-1513.
24. Mirzaee, E., S. Rafiee, A. Keyhani, and Z. Emam-Djomeh. 2009. Determining of moisture diffusivity and activation energy in drying of apricots. Research in Agricultural Engineering 55: 114-120.
25. Mohammadi, I., R. Tabatabaekoloor, and A. Motevali. 2019. Effect of air recirculation and heat pump on mass transfer and energy parameters in drying of kiwifruit slices. Energy 170: 149-158.
26. Morris, C. E. 1994. Efficient cookers, dryers and fryers. Journal of Food Engineering 10: 115-120.
27. Mujumdar, A. S. 2006. Impingement drying. In Mujumdar, A. S. (Ed.) Handbook of Industrial Drying third edn (UK: Taylor and Francis).
28. Mwithiga, G., and J. O. Olwal. 2005. The drying kinetics of kale (Brassica oleracea) in a convective hot air dryer. Journal of Food Engineering 71: 373-378.
29. Obot, N. T., and T. A. Trabold. 1987. Impingement heat transfer within arrays of circular jets: part 1-effects of minimum, intermediate, and complete crossflow for small and large spacings. Journal of Heat Transfer 109: 872-879.
30. Orsat, V., V. Changrue, and G. V. Raghavan. 2006. Microwave drying of fruits and vegetables. Stewart Post-Harvest Rev 6: 4-9.
31. Qiu, G., D. Wang, X. Song, Y. Deng, and Y. Zhao. 2018. Degradation kinetics and antioxidant capacity of anthocyanins in air-impingement jet dried purple potato slices. Food Research International 105: 121-128.
32. Radhika, G., S. Satyanarayana, and D. Rao. 2011. Mathematical model on thin layer drying of finger millet (Eluesine coracana). Advance Journal of Food Science and Technology 3: 127-131.
33. Rao, M. 1986. Rheological properties of fluid foods. Engineering Properties of Foods: 1-47.
34. Sadin R., G. R. Chegini, and H. Sadin. 2014. The effect of temperature and slice thickness on drying kinetics tomato in the infrared dryer. Heat and Mass Transfer 50: 501-507.
35. Sagar, V., and P. S. Kumar. 2010. Recent advances in drying and dehydration of fruits and vegetables: a review. Journal of Food Science and Technology 47: 15-26.
36. Sarkar, A., N. Nitin, M. V. Karwe, and R. P. Singh. 2004. Fluid Flow and Heat Transfer in Air Jet Impingement. Food Processing 69: 113-122.
37. Sarkar, A., and R. P. Singh. 2004. Air impingement technology for food processing: visualization studies. LWT-Food Science and Technology 37: 873-879.
38. Wae-hayee, M., P. Tekasakul, and C. Nuntadusit. 2013. Influence of nozzle arrangement on flow and heat transfer characteristics of arrays of circular impinging jets. Songklanakarin Journal of Science & Technology 35.
39. Wang, D., J. W. Dai, H. Y. Ju, L. Xie, H. W. Xiao, Y. H. Liu, and Z. J. Gao. 2015. Drying kinetics of American ginseng slices in thin-layer air impingement dryer. International Journal of Food Engineering 11: 701-711.
40. Xiao, H. W., J. W. Bai, L. Xie, D. W. Sun, and Z. J. Gao. 2015. Thin-layer air impingement drying enhances drying rate of American ginseng (Panax quinquefolium L.) slices with quality attributes considered. Food and Bioproducts Processing 94: 581-591.
41. Xiao, H. W., C. L. Pang, L. H. Wang, J. W. Bai, W. X. Yang, and Z. J. Gao. 2010a. Drying kinetics and quality of Monukka seedless grapes dried in an air-impingement jet dryer. Biosystems Engineering 105: 233-240.
42. Xiao, H. W., Z. J. Gao, H. Lin, and W. X. Yang. 2010b. Air impingement drying characteristics and quality of carrot cubes. Journal of Food Process Engineering 33: 899-918.
43. Xiao, H. W., S. X. Zhang, J. W. Bai, X. M. Fang, Z. J. Zhang, and Z. J. Gao. 2010c. Air impingement drying characteristics of apricot. Transactions of the Chinese Society of Agricultural Engineering 26: 318-323.
44. Xiao, H. W., X. D. Yao, H. Lin, W. X. Yang, J. S. Meng, and Z. J. Gao. 2012. Effect of SSB (superheated steam blanching) time and drying temperature on hot air impingement drying kinetics and quality attributes of yam slices. Journal of Food Process Engineering 35: 370-390.
45. Yaldiz, O., C. Ertekin, and H. I. Uzun. 2001. Mathematical modeling of thin layer solar drying of sultana grapes. Energy 26: 457-465.
46. Zhang, Q., and J. B. Litchfield. 1991. An optimization of intermittent corn drying in a laboratory scale thin layer dryer. Drying Technology 9: 383-395.
47. Zheng, X., H. W. Xiao, L. Wang, Q. Zhang, J. Bai, L. Xie, H. Ju, and Z. J. Gao. 2014. Shorting drying time of Hami-Melon slice using infrared radiation combined with air impingement drying. Transactions of the Chinese Society of Agricultural Engineering 30: 262-269.
CAPTCHA Image