با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی لاتین

نویسندگان

دانشکده کشاورزی، دانشگاه صنعتی شاهرود، شاهرود، ایران

چکیده

روغن هسته انار (PSO) منبع شناخته شده‌ای از ترکیبات با ارزش است. بنابراین هدف از این مطالعه بررسی خواص فیزیکومکانیکی و ساختاری آبنبات ژله‌ای غنی شده با روغن هسته انار درون‌پوشانی شده در نانوژل‌های کیتوزان (CS)-کاپریک اسید (CA) حاوی اسانس آویشن (TEO) است. بدین منظور، در ابتدا نانوژل‌های کیتوزان-کاپریک اسید، با ایجاد پیوند آمید بین کیتوزان و کاپریک اسید تولید شدند که تصویر میکروسکوپ الکترونی روبشی (SEM) شکل کروی نانوژل‌های کیتوزان-کاپریک اسید را نشان داد. سپس امولسیون پیکرینگ روغن هسته انار با نانوژل کیتوزان-کاپریک اسید و اسانس آویشن درون‌پوشانی شده در نانوژل کیتوزان-کاپریک اسید پایدار شدند. نتایج نشان داد که حضور اسانس آویشن در ساختار نانوژل باعث ایجاد قطرات روغن کوچک‌تر شد. در ادامه از امولسیون‌های پیکرینگ در فرمولاسیون آبنبات ژله‌ای استفاده شد و متعاقباً ساختار میکروسکوپی، آنالیز بافت (TPA) و شاخص‌های رنگ آبنبات‌های ژله‌ای مورد بررسی قرار گرفت. استفاده از روغن هسته انار به‌صورت درون کپسوله شده، باعث کاهش جدا شدن روغن هسته انار از بافت آبنبات ژله‌ای شد. نتایج آزمون پروفایل بافت نشان داد که اگرچه نمونه‌های حاوی امولسیون روغن هسته انار، سختی (6/156-4/173N)، صمغی بودن (2/202-1/262N)، انسجام (3/1-5/1%)، خاصیت ارتجاعی (2/40-7/54 N.s) و چسبندگی (29/0-4/0 N.s) کمتری نسبت به نمونه شاهد (3/250N، 9/627N، 7/160N.s، 63/0N.s) داشتند، خاصیت فنریت آن‌ها (92/0-93/0%) بیشتر از نمونه شاهد (79/0%) بود. علاوه بر این، نتایج شاخص‌های رنگی نشان داد که نمونه‌های حاوی روغن هسته انار کپسوله شده باعث تغییر شاخص‌های رنگی نسبت به نمونه شاهد شد که این تغییر در حضور اسانس آویشن بیشتر بود.

کلیدواژه‌ها

Open Access

©2021 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

Amjadi, S., M. Ghorbani, H. Hamishehkar, and L. Roufegarinejad. 2018. Improvement in the stability of betanin by liposomal nanocarriers: Its application in gummy candy as a food model. Food Chemistry 256: 156-162.
2. Atarian, M., A. Rajaei, M. Tabatabaei, A. Mohsenifar, and H. Bodaghi. 2019. Formulation of Pickering sunflower oil-in-water emulsion stabilized by chitosan-stearic acid nanogel and studying its oxidative stability. Carbohydrate Polymers 210: 47-55.
3. Aveyard, R., B. P. Binks, and J. H. Clint. 2003. Emulsions stabilised solely by colloidal particles. Advances in Colloid and Interface Science 100: 503-546.
4. Balasubramani, P., R. Viswanathan, and M. Vairamani. 2013. Response surface optimisation of process variables for microencapsulation of garlic (Allium sativum L.) oleoresin by spray drying. Biosystems Engineering 114 (3): 205-213.
5. Benbettaieb, N., M. Kurek, S. Bornaz, and F. Debeaufort. 2014. Barrier, structural and mechanical properties of bovine gelatin-chitosan blend films related to biopolymer interactions. Journal of the Science of Food and Agriculture 94 (12): 2409-2419.
6. Beyki, M., S. Zhaveh, S. T. Khalili, T. Rahmani-Cherati, A. Abollahi, M. Bayat, and A. Mohsenifar. 2014. Encapsulation of Mentha piperita essential oils in chitosan–cinnamic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Industrial Crops and Products 54: 310-319. https://doi.org/http://dx.doi.org/10.1016/j.indcrop.2014.01.033
7. Caine, W. R., J. L. Aalhus, D. R. Best, M. E. R. Dugan, and L. E. Jeremiah. 2003. Relationship of texture profile analysis and Warner-Bratzler shear force with sensory characteristics of beef rib steaks. Meat Science 64 (4): 333-339.
8. Chen, H., D. J. McClements, E. Chen, S. Liu, B. Li, and Y. Li. 2017. In situ interfacial conjugation of chitosan with cinnamaldehyde during homogenization improves the formation and stability of chitosan-stabilized emulsions. Langmuir 33 (51): 14608-14617.
9. de Moura, S. C. S. R., C. L. Berling, A. O. Garcia, M. B. Queiroz, I. D. Alvim, and M. D. Hubinger. 2019. Release of anthocyanins from the hibiscus extract encapsulated by ionic gelation and application of microparticles in jelly candy. Food Research International 121: 542-552.
10. Dias, M. I., I. C. F. R. Ferreira, and M. F. Barreiro. 2015. Microencapsulation of bioactives for food applications. Food & Function 6 (4): 1035-1052.
11. Golmakani, M. T., and K. Rezaei. 2008. Comparison of microwave-assisted hydrodistillation withthe traditional hydrodistillation method in the extractionof essential oils from Thymus vulgaris L. Food Chemistry 109 (4): 925-930.
12. Hadian, M., A. Rajaei, A. Mohsenifar, and M. Tabatabaei. 2017. Encapsulation of Rosmarinus officinalis essential oils in chitosan-benzoic acid nanogel with enhanced antibacterial activity in beef cutlet against Salmonella typhimurium during refrigerated storage. LWT-Food Science and Technology 84: 394-401.
13. Hani, N. M., S. R. Romli, and M. Ahmad. 2015. Influences of red pitaya fruit puree and gelling agents on the physico-mechanical properties and quality changes of gummy confections. International Journal of Food Science & Technology 50 (2): 331-339.
14. Hosseini, E., A. Rajaei, M. Tabatabaei, A. Mohsenifar, and K. Jahanbin. 2019. Preparation of Pickering Flaxseed Oil-in-Water Emulsion Stabilized by Chitosan-Myristic Acid Nanogels and Investigation of Its Oxidative Stability in Presence of Clove Essential Oil as Antioxidant. Food Biophysics 1-13.
15. Jiang, Y., F. Li, D. Li, D. Sun-Waterhouse, and Q. Huang. 2019. Zein/Pectin Nanoparticle-Stabilized Sesame Oil Pickering Emulsions: Sustainable Bioactive Carriers and Healthy Alternatives to Sesame Paste. Food and Bioprocess Technology 1-11.
16. Kakran, M., and M. N. Antipina. 2014. Emulsion-based techniques for encapsulation in biomedicine, food and personal care. Current Opinion in Pharmacology 18: 47-55.
17. Lamba, H., K. Sathish, and L. Sabikhi. 2015. Double emulsions: emerging delivery system for plant bioactives. Food and Bioprocess Technology 8 (4): 709-728.
18. Larkin, P. 2011. Infrared and Raman spectroscopy: principles and spectral interpretation. Elsevier.
19. McClements, D. J. 2010. Emulsion design to improve the delivery of functional lipophilic components. Annual Review of Food Science and Technology 1: 241-269.
20. McClements, D. J., and Y. Li. 2010. Structured emulsion-based delivery systems: Controlling the digestion and release of lipophilic food components. Advances in Colloid and Interface Science 159 (2): 213-228.
21. Moghaddas Kia, E., S. Ghaderzadeh, A. M. Langroodi, Z. Ghasempour, and A. Ehsani. 2020. Red beet extract usage in gelatin/gellan based gummy candy formulation introducing Salix aegyptiaca distillate as a flavouring agent. Journal of Food Science and Technology https://doi.org/10.1007/s13197-020-04368-8
22. Mohsenabadi, N., A. Rajaei, M. Tabatabaei, and A. Mohsenifar. 2018. Physical and antimicrobial properties of starch-carboxy methyl cellulose film containing rosemary essential oils encapsulated in chitosan nanogel. International Journal of Biological Macromolecules 112: 148-155.
23. Mwangi, W. W., K. W. Ho, B. T. Tey, and E. S. Chan. 2016. Effects of environmental factors on the physical stability of pickering-emulsions stabilized by chitosan particles. Food Hydrocolloids 60: 543-550. https://doi.org/10.1016/j.foodhyd.2016.04.023.
24. Pereda, M., G. Amica, and N. E. Marcovich. 2012. Development and characterization of edible chitosan/olive oil emulsion films. Carbohydrate Polymers 87 (2): 1318-1325.
25. Pesavento, G., C. Calonico, A. R. Bilia, M. Barnabei, F. Calesini, R. Addona, and A. Lo Nostro. 2015. Antibacterial activity of Oregano, Rosmarinus and Thymus essential oils against Staphylococcus aureus and Listeria monocytogenes in beef meatballs. Food Control 54: 188-199. https://doi.org/http://dx.doi.org/10.1016/j.foodcont.2015.01.045.
26. Pu, J., J. D. Bankston, S. Sathivel. 2011. Developing microencapsulated flaxseed oil containing shrimp (Litopenaeus setiferus) astaxanthin using a pilot scale spray dryer. Biosystems Engineering 108 (2): 121-132.
27. Rajaei, A., M. Hadian, A. Mohsenifar, T. Rahmani-Cherati, M. Tabatabaei. 2017. A coating based on clove essential oils encapsulated by chitosan-myristic acid nanogel efficiently enhanced the shelf-life of beef cutlets. Food Packaging and Shelf Life 14: 137-145.
28. Rao, K. S. V. K., P. R. Reddy, Y. I. Lee, and C. Kim. 2012. Synthesis and characterization of chitosan--PEG--Ag nanocomposites for antimicrobial application. Carbohydrate Polymers 87 (1): 920-925.
29. Rodriguez, F. P., D. Campos, E. T. Ryser, A. L. Buchholz, G. D. Posada-Izquierdo, B. P. Marks, and E. Todd. 2011. A mathematical risk model for Escherichia coli O157: H7 cross-contamination of lettuce during processing. Food Microbiology 28 (4): 694-701.
30. Rota, M. C., A. Herrera, R. M. Mart’inez, J. A. Sotomayor, and M. J. Jordan. 2008. Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control 19 (7): 681-687.
31. Sabaa, M. W., H. M. Abdallah, N. A. Mohamed, and R. R. Mohamed. 2015. Synthesis , Characterization and Application of Biodegradable Crosslinked Carboxymethyl Chitosan / Poly Vinyl. Materials Science & Engineering 56: 363-373. https://doi.org/10.1016/j.msec.2015.06.043.
32. Soleimanian, Y., S. A. H. Goli, J. Varshosaz, and S. M. Sahafi. 2018. Formulation and characterization of novel nanostructured lipid carriers made from beeswax, propolis wax and pomegranate seed oil. Food Chemistry 244: 83-92. https://doi.org/10.1016/j.foodchem.2017.10.010
33. Valenzuela, C., L. Abugoch, and C. Tapia. 2013. Quinoa protein-chitosan-sunflower oil edible film: Mechanical, barrier and structural properties. LWT-Food Science and Technology 50 (2): 531-537.
34. Wang, L. J., Y. Q. Hu, S. W. Yin, X. Q. Yang, F. R. Lai, and S. Q. Wang. 2015. Fabrication and characterization of antioxidant pickering emulsions stabilized by zein/chitosan complex particles (ZCPs). Journal of Agricultural and Food Chemistry 63 (9): 2514-2524. https://doi.org/10.1021/jf505227a.
35. Wang, X. H., D. P. Li, W. J. Wang, Q. L. Feng, F. Z. Cui, Y. X. Xu, M. van der Werf. 2003. Crosslinked collagen/chitosan matrix for artificial livers. Biomaterials 24 (19): 3213-3220.
36. Wei, Z., C. Wang, S. Zou, H. Liu, Z. Tong. 2012. Chitosan nanoparticles as particular emulsifier for preparation of novel pH-responsive Pickering emulsions and PLGA microcapsules. Polymer 53 (6): 1229-1235. https://doi.org/10.1016/j.polymer.2012.02.015.
37. Wongkongkatep, P., K. Manopwisedjaroen, P. Tiposoth, S. Archakunakorn, T. Pongtharangkul, M. Suphantharika, J. Wongkongkatep. 2012. Bacteria Interface Pickering Emulsions Stabilized by Self-assembled Bacteria–Chitosan Network. Langmuir 28 (13): 5729-5736. https://doi.org/10.1021/la300660x.
38. Xiao, J., X. Wang, A. J. Perez Gonzalez, and Q. Huang. 2016. Kafirin nanoparticles-stabilized Pickering emulsions: Microstructure and rheological behavior. Food Hydrocolloids 54: 30-39. https://doi.org/10.1016/j.foodhyd.2015.09.008.
39. Yekdane, N., and S. A. H. Goli. 2019. Effect of Pomegranate Juice on Characteristics and Oxidative Stability of Microencapsulated Pomegranate Seed Oil Using Spray Drying. Food and Bioprocess Technology 12 (9): 1614-1625.
40. Zhang, S., Y. Zhou, C. Yang. 2015. Pickering emulsions stabilized by the complex of polystyrene particles and chitosan. Colloids and Surfaces A: Physicochemical and Engineering Aspects 482: 338-344.
41. Zhang, Y., L. Yang, Y. Zu, X. Chen, F. Wang, and F. Liu. 2010. Oxidative stability of sunflower oil supplemented with carnosic acid compared with synthetic antioxidants during accelerated storage. Food Chemistry 118 (3): 656-662.
42. Zhaveh, S., A. Mohsenifar, M. Beiki, S. T. Khalili, A. Abdollahi, T. Rahmani-Cherati, and M. Tabatabaei. 2015. Encapsulation of Cuminum cyminum essential oils in chitosan-caffeic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Industrial Crops and Products 69: 251-256. https://doi.org/http://dx.doi.org/10.1016/j.indcrop.2015.02.028.
43. Ziaee, M., S. Moharramipour, and A. Mohsenifar. 2014. Toxicity of Carum copticum essential oil-loaded nanogel against Sitophilus granarius and Tribolium confusum. Journal of Applied Entomology 138 (10): 763-771.
CAPTCHA Image