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Abstract 

In this paper, performance of a no-till corn planter in a soil covered with previous wheat residue 
was evaluated. Three levels of crop residue cover (CRC): 30, 45 and 60%, two planting schemes; on-
bed and in-furrow and two forward speed: (4 and 8 km h

-1
) were considered as treatments. The field 

was evaluated by ground and air observations. The purpose of this study was to investigate the 
capability of aerial images captured by an unmanned aerial vehicle (UAV) in identifying the distances 
between corn seedlings and as a result, assessing the quality of planter performance. Collected data 
from ground and aerial imagery were used to calculate seed establishment indices including multiple 
index, miss index, quality of feed index, precision index and also emergence rate index (ERI), for each 
plot. Images captured from10 m altitude (4.5 mm pixel

-1
) could give satisfactory results in relation to 

our objectives. Our results show that acceptable correlations existed between terrestrial and aerial 
seedlings spacing data sets (0.94<R<0.98) suggesting the aerial imagery is a good choice for 
evaluating the seed establishment and estimating ERI. Aerial imagery data source underestimated 
quality of feed and precision indices, overestimated miss index and could not provide processed data 
range needed for computing multiple index due to low image resolution, weeds presence within crop 
rows and overlapping of leaves.  

Keywords: Aerial imagery, Crop residue cover (CRC), Seed establishment indices, Unmanned 
aerial vehicle (UAV)  

Introduction
1
 

Farming practices have undergone huge 
changes to cope with increasing demands for 
more food and safeguarding environment 
(Zheng et al., 2012). A considerable number of 
studies have been conducted to explore 
advantages and best management practices 
including soil preparation, previous residue 
management and planting into partially 
covered soils. Conservation farming 
techniques are often associated with previous 
surface crop residue management. Keeping 
certain amount of previous residue helps 
retaining some soil moisture and reducing soil 
erosion through increased water infiltration 
into soil, in addition this practice provides 
more carbon source needed for maintaining a 
proper C/N ratio (Naresh et al., 2016). On the 
other hand farming practices such as 
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conservation tillage helps to reduce energy 
needed for crop production thus cheaper 
farming can be realized. Some farmers avoid 
to adopt conservation farming due to 
possibility of poor stand establishment which 
might ultimately reduce crop yield. Available 
conventional planters fail to place seeds into 
soils which are less tilled. The adverse effects 
of planting into residue covered soils have 
been emphasized by Swan et al. (1994) and 
Fallahi and Raoufat (2008). Inadequate 
seeding depth, low uniformity in seed spacing, 
variation in seed placement depth and decrease 
in crop yield are a few adverse effects reported 
by above researchers.  

Planter attachments such as coulters are 
valuable tools for cutting the residue and help 
achieving proper seeding depth, on the other 
hand, row-cleaners clear the seeding row from 
residue and clods helping a good drill and seed 
placement. These attachments are necessary 
tools for a successful planting into a partially 
residue covered soils where conventional 
planters fail to penetrate into the top soil. 
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Raoufat and Matbooei (2007) concluded that 
using row cleaner in farms with 50% crop 
residue cover at a forward speed of 7 km h

-1
 

resulted in the best plant establishment, 
uniformity in seed spacing and desirable 
values of emergence rate, miss, quality of feed 
and precision indices. Dadi and Raoufat 
(2012) found that using a winged chisel furrow 
opener preceded by a row cleaner equipped 
with treader wheels arrangement removes 
appreciable amounts of residue on the planting 
row in a conservation farming system. They 
observed better cleaning of crop residue at 
higher forward speeds, but this caused an 
increase in miss index that was not desirable.  

As the conservation farming is extending 
throughout the world certain tillage and 
planting systems have been developed 
including no-till planters. These planters, place 
seeds into covered or partially covered residue 
soils. The performance of the planter shall be 
monitored by measuring seedling spacings. 
Currently, data acquisition from farms relies 
on manual field-data collection, survey 
responses, and agricultural censuses, but it is 
extremely difficult to acquire the data 
systematically and continuously over large 
areas using these methods. Alternatively, 
remote sensing techniques have the potential 
to survey different practices in farms 
inexpensively and efficiently in a systematic, 
timely and cost-effective manner (Zheng et al., 
2014; Rostami and Afzali Gorouh, 2017). 
Satellites and aircrafts have been widely 
employed to monitor crop growth, estimate 
crop yield and also for site specific 
management applications. In spite of few 
advantages, acquiring images from satellites 
and air crafts is expensive and not easy for 
farmers and researchers to access. Low quality 
of acquired images from satellite and air crafts, 
effect of weather conditions on imagery and 
adverse effects of satellite sensor characteristic 
is other limiting factors. As an alternative, 
unmanned aerial vehicles (UAVs) have been 
used for aerial imagery and has found 
applications in crop monitoring and 
management (Jannoura et al., 2015; Xiang and 
Tain, 2011). The UAVs are able to fly at lower 

altitudes as compared to airplanes and 
satellites. They can capture ultrahigh 
resolution images and therefore have been 
recently used to capture images of objects such 
as small plants and patches (Xiang and Tian, 
2011). The flight preparation time for UAVs is 
low and imagery can be scheduled even on 
cloudy days therefore the UAVs image 
acquisition system is more flexible. The costs 
of imagery and data acquisition for the UAVs 
are lower compared to satellites and  other 
available aircrafts, commercial cameras having 
various degrees of image resolution and 
configuration have been marketed which can 
be mounted on UAVs as desired giving the 
operators and researchers more flexibility 
(Sankaran et al., 2015). Many researchers have 
concluded that commercial cameras are 
powerful parts of data acquisition systems for 
UAVs especially when green vegetation is to 
be monitored both from air and land. In 
summary low cost and  high resolution of the 
UAVs equipped with proper image capture 
and acquisition hardware makes this a good 
choice for assessing green vegetative cover 
such as broadly and wheat on farms (Torres-
Sanchez et al., 2014). 

Precision agriculture is one of the areas 
which has adopted UAV for the last 12 years. 
For instance, biomass and nitrogen status of 
corn, alfalfa and soybean crops have been 
estimated by unmanned helicopters equipped 
with camera and image acquisition systems by 
Hunt, Cavigelli, Daughtry, McMurtrey, and 
Walthall in 2005. In similar studies unmanned 
radio controlled helicopters used to acquire 
thermal and narrow band multispectral images 
to estimate biophysical parameters correlated 
with leaf area index, water stress and 
chlorophyll content (Berni, Zarco-Tejada, 
Suarez, and Fereres, 2009). In another study 
remote sensing technology was used to 
estimate grain yield and total aerial biomass of 
a rice crop (Swain, Thomson, and Jayasuriya, 
2010). Having aerial images, they established 
regression equation between measured 
parameters and normalized difference 
vegetation index (NDVI) given by images and 
obtained regression coefficients of 0.72 and 
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0.76 for grain yield and aerial biomass, 
respectively. In an investigation conducted by 
Aguera, Carvajal, and Saiz (2011) an 
acceptable correlation was established between 
applied nitrogen to sunflower and NDTI 
extracted from images captured by a 
quadcopter at a height of 70 m above the crop 
(Vega et al., 2015).  

In another research performed by Zhang et 
al., 2018, the distances between corn seedlings 
(2-3 fully expanded leaves) were calculated by 
using the images captured by a Phantom 3 
Professional flying at five altitudes: 1, 2, 3, 4 
and 5m. They developed a method by training 
an algorithm in an indoor facility with plastic 
corn plants. Then, the method was scaled up 
and tested in a field with maize plant spacing 
that exhibiting natural variation. Their major 
problem was the presence of weeds specially 
weeds growing within crop rows. They could 
achieve reliable results at an altitude of 5m. In 
summary they concluded that it is possible to 
precisely quantify the distance between corn 
plants.  

Varela et al. (2018) aimed to develop a 
reliable, timely, and unbiased method for 
counting corn plants based on ultra-high-
resolution imagery acquired from unmanned 
aerial systems (UAS) to automatically scout 
fields and apply it to real field conditions. 
Their data processing included five steps: (1) 
images were converted into excess greenness 
(ExG)-vegetation index, (2) row detection and 
contours were delineated, (3) geometric 
descriptors were built from contours, (4) 
classifier training, and (5) classifier testing. 
Their results showed that for successful model 
implementation, plants should have between 
two to three leaves when images are collected 
(to avoid overlapping) and best workflow 
performance was reached at 2.4 mm resolution 
corresponding to 10 m of altitude. 

Because planting space is still a critical 
parameter for crop growth models, it is critical 
to focus on how to measure plant to plant 
distances in a row. The UAV systems 
represent a powerful tool that can be used to 
collect high-resolution real-time images of 
cropping systems, and thereby support the 

calculation of plant interval distances. In this 
study, our objective was to investigate the 
ability of a low cost drone; DJI Phantom 3 
Professional

1
 equipped with a commercial 

RGB camera for monitoring performance of a 
corn planter in a conservation farming system. 
Two important issues in conservation farming 
are the specification of the tilling machine (if 
used) and of the planter. Adequate literature is 
available on specifications of the planters 
suitable for placing seeds in partially residue 
covered soils (Raoufat and Mahmoodie, 2005; 
Bahrani et al., 2007; Dadi and Raoufat, 2012; 
Nejadi and Raoufat, 2013) considering 
recommendations by above researchers, it is 
decided to use a newly manufactured no-till 
planter made by Tarashkadeh Company

2
. 

Materials and Methods  

I: Experimental site 

Our research was conducted in one of the 
Experimental Stations of College of 
Agriculture, Shiraz University, Shiraz, Iran 
(29°44´2ʺN, 52°35´33ʺE upper left point and 
29°43´59.6ʺN, 52°35´40ʺE lower right point). 
The selected farm was covered with fresh 
previous irrigated wheat residue averaging 
8000 kg ha

-1
.  

II: Plots preparation 

In subsequent operations, the previous crop 
residue was reduced and adjusted to the three 
desired levels considered for this study. First 
the loose straw discharged from combine was 
baled out from the field and only 3500 kg ha

-1
 

was left (equivalent to 60% CRC) and 
considered as R1. The remaining fallen 
residues were removed out and residue was 
adjusted to 1700 kg ha

-1
 (equivalent to 45% 

CRC) forming the second level R2. For 
preparing the third level, (R3) the remaining 
crop residue was grazed and established at 620 
kg ha

-1
 (equivalent to 30% CRC). This level 

corresponds to minimum residue level 
recommended for conservation farming 
(CTIC, 2010). To prepare a field having 
various scenery of seed placement, seeds were 
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planted at two forward speeds of 4 and 8 kmh
-1

 
on plots having residue cover levels of 30, 45 
and 60 %. The conventional local practice of 
planting on-bed and in-furrow was also 
considered. Therefore, a total of 12 treatments 
in 3 replications was considered for our study. 
The statistical design was split-split plot 
arranged as a complete block design, main 
plots were crop residue, sub plots were 
planting scheme and sub-sub plots were 
planter forward speed. Each plot was 
measured 4×30 m

2
. The corn was a hybrid 

single cross 704 with emergence rate of 92% 
and purity of 98%. Corn was planted in plots 
by a no-till planter made by Tarashkade 
Company. Each unit of the four-row planter 
included a plain coulter and a wave coulter. 
The former assisted in placing fertilizer and 
the latter assisted in pulverizing a narrow band 
ready for falling seeds. The row spacing was 
adjusted to 60 cm and theoretical seed spacing 
of 15.5 cm. Sowing date was July, 31th 2016 
and on the next day first irrigation was done. 
After irrigation, the plots were closely 
monitored for any seedling emergence.  
III: Data collection  

Measurements in each plot were the number 
of seeds emerged daily and the distance 
between consecutive seedlings. Newly 
emerged seedlings were counted every day in 
a 6 meters length in the middle of each row in 
each plot. Counting continues until no changes 
was seen in the number of newly emerged 
seedlings. The measurements were taken both 
on the ground and by the drone. For terrestrial 
measurements on the August 20th 2016, a 
measuring tape was placed on each row and 
distances between consecutive seedlings were 
measured and recorded. Drone images were 
captured from each plot at 14 different 
altitudes (4, 6, 8,…and 30m) on the 20th and 
the 27th August 2016. Pixel resolution of 
images captured at different altitudes and 
different time intervals after planting (20 and 
27 days after planting), were examined to find 
the best altitude and timing for drone imagery. 
Only the images captured at 10 meter height 
(4.5 mm pixel

-1
) could give satisfactory results 

in relation to our objectives. It should be noted 

that although resolution for imagery at lower 
altitudes was better but captured scenery was 
small. On the other hand, given the condition 
of the plot, imagery at altitudes more than 10 
m height could not give satisfactory pixel 
information for detecting single corn 
seedlings. As images captured at earlier stages 
of corn growth had less leaves overlapping 
problem so the first drone imagery taken on 
the 20th August was selected for further 
analysis. 
IV: Data processing 

Due to presence of heavy residues, weeds, 
shadow and leaves overlapping it was 
impossible to analyze images using written 
code programs like Matlab

1
, therefore the 

analysis was continued semi manually with the 
help of ImageJ

2
 and Excel

3
 programs. Fig.1 

shows a part of aerial image of a plot with the 
least residue level (30% CRC), planted on-bed 
at 8 km h

-1
, having the least problem of weed 

and leaves overlapping taken on the 20th 
August 2016. 

For measuring distances between corn 
seedlings a rectangular marker of 1×0.22 m

2
 in 

yellow color (for calibration purpose) was 
placed in each plot so that the hovering drone 
camera could capture images of each specific 
plot and the marker laid on it. For each plot, 
the captured image from a 10m height was 
retrieved in ImageJ program and as 
demonstrated in Fig.2 the marker length was 
calculated by using the tools “straight” and 
“measure” commands. Then the distance 
between adjacent seedlings was measured in 
the same way. Camera distortion was not a 
problem as measurements were performed for 
each plot separately and the equivalent 
seedling spacing was calculated by using the 
length of the yellow marker in the plot image. 
In the next step measured distances from 
ImageJ were moved to spreadsheet (Excel 
2013) and converted to real distances in 
centimeters by equation (1). 
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Fig.1. Image captured from 10m height by drone (L1: length of marker, L2: seedling spacing) 

 
Fig.2. Measuring seedling spacing in ImageJ 

For terrestrial measurements a measuring 
tape was placed in each row and consecutive 
distances between seedlings were measured 
and recorded. At this stage two sets of data 
were at hand, one gathered manually and one 
concluded from drone imagery. In the next 
step, the existence of a linear correlation 
between these two sets of data was 
investigated. In addition, multiple index, miss 
index, quality of feed index and precision 

index were calculated. In the following section 
these indices are briefly introduced. 
Multiple index: The theoretical spacing is the 
distance between seedlings assuming that there 
were no skips, multiples, or variability and is 
based on the manufacturer’s specifications. It 
will theoretically be equal to the mode of 
distribution of spacing. The multiple index D 
is the percentage of spacing that are less than 
or equal to half of the theoretical spacing. That 
is: 
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D = 
  

 
 × 100  

Where, n1 is the number of spacing that are 
more than zero but no more than half times the 
theoretical spacing; and N is the total number 
of distances measured. Smaller values of D 
indicate better performance (Kachman and 
Smith, 1995).  
Quality of feed index: The quality of feed 
index A is the percentage of spacing that are 
more than half but no more than 1.5 times the 
theoretical spacing. That is: 

A = 
  

 
 × 100  

Where, n2 is the number of spacing that are 
more than half but no more than 1.5 times the 
theoretical spacing; and N is the total number 
of distances measured. Larger values of A 
indicate better performance than smaller 
values. In other words, the quality of feed 
index is a measure of how often the spacing 
are close to the theoretical spacing (Kachman 
and Smith, 1995). 
Miss index: The miss index M is the 
percentage of spacing greater than 1.5 times 
the theoretical spacing. That is: 

M = 
  

 
 × 100   

Where, n3 is the number of spacing that are 
more than 1.5 times the theoretical spacing; 
and N is the total number of distances 
measured. Smaller values of M indicate better 
performance than larger values (Kachman and 
Smith, 1995). 
Precision: Precision, C is a measure of the 
variability in spacing between plants after 
accounting for variability due to both multiples 
and skips. A practical upper limit is 29%. 
Smaller values of C indicate better 
performance than larger values. The precision 
is the coefficient of variation of spacing that 
are classified as singles. That is: 

C = 
  

    
 × 100   

Where, S2 is the sample standard deviation of 
spacing that are more than half but no more 
than 1.5 times the theoretical spacing. And xref 
is the theoretical spacing of plants (Kachman 
and Smith, 1995). 

Emergence Rate Index (ERI): For each 
treatment an ERI was determined by counting 
the number of plants emerged from a mid-6 m 
length of rows for several days after planting 
(DAP) using the following equation 
introduced by Erbach (1982): 

ERI
 
= ∑

           

    

 
    

Where, n is the nth emergence observation, 
EMGn is the percentage of seeds planted 
emerged on the day of the nth emergence 
observation, EMGn-1 is the percentage of seeds 
planted emerged on the day of the (n-1)th 
emergence observation equal to 0 when n=1 
and DAPn is the number of days after planting 
when the nth emergence observation was 
taken. In this study counts were made on 7, 10, 
12, 14 days after planting and stopped when 
no further increase in emerged counts was 
observed.  

Results and Discussion  

I. General relationship between two sets of data 

Data on seedlings spacing after emergence 
gathered manually and corresponding data on 
seedlings spacing is obtained from drone 
imagery were retrieved in Excel program, the 
relationship between these two sets of data 
was examined and their correlation coefficient: 
R related to their linear relationships was 
calculated (Table 1). This table shows that 
there is a good relationship between ground 
data and aerial ones and therefore, it is 
possible to use drones to evaluate the seedling 
emergence and indices of seed stand 
establishment.  

As mentioned in the previous paragraph the 
first drone imagery was accomplished on the 
same day when ground measurements were 
taken. Seven days later aerial imagery was 
repeated to look for the existence of any 
change in imagery results. Correlation 
coefficients between the ground and aerial data 
for the two sets are reported in Table 1. It 
shows that ground and aerial observations are 
well correlated and therefore aerial imagery 
has the potential to replace the tedious ground 
measurements. Furthermore this table shows 
that there is no significant difference between 
the two data sets and therefore we can 
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conclude that do not need to rush for aerial 
imagery. However it should be pointed out that 
the timing interval between planting date and 
aerial data collection should not be so long as 

weeds and accelerated leaf growth hinder 
aerial imagery and reduce the accuracy of 
results.  

 

Table 1- Correlation coefficient R between terrestrial and aerial seedling spacing data 
Plot R (Terrestrial 20-8-2016 vs. Drone 20-8-2016) R

 
(Terrestrial 20-8-2016 vs. Drone 27-8-2016) 

R1P1V1 0.97 0.97 
R1P1V2 0.97 0.96 
R1P2V1 0.95 0.95 
R1P2V2 0.96 0.98 
R2P1V1 0.96 0.95 
R2P1V2 0.96 0.94 
R2P2V1 0.95 0.95 
R2P2V2 0.97 0.95 
R3P1V1 0.98 0.95 
R3P1V2 0.96 0.97 
R3P2V1 0.94 0.94 
R3P2V2 0.97 0.95 

R1= 60% CRC; R2=45% CRC; R3=30% CRC; P1= on-bed; P2= in-furrow; V1=4km h
-1

; V2=8km h
-1 

It should be noted that the present study 
was aimed to the asses capability of aerial 
imagery on a local farm covered with high 
residue and considerable weeds. The full 
automatic analysis of images is not possible 
for such farm. Other researchers, including 
Zhang et al., 2018 and Varela et al., 2018 have 
worked in fields having considerably less 
residue and weeds, hence they have been able 
to proceed in a more automatic approach. 

The statistical analysis of data gathered 
manually and from aerial imagery, for these 
indices related to seed placement showed that 
the amount of CRC, planting scheme and 
forward speed of planter had no significant 
effect on indices related to seed placement, 

therefore it can be concluded that the no-till 
planter used, performed satisfactorily.  

Table 2 shows that none of the indices have 
been significantly affected by the sources of 
variation for both terrestrial and aerial data 
sources. In other words stand establishment 
indices can be estimated using aerial imagery 
data sources with no significant loss of 
accuracy. 
II. Planter performance indices  

In the next step means of four indices of 
multiple index, quality of feed index, miss 
index and precision index from terrestrial and 
aerial sources have been compared. The 
deviation between the indices calculated by 
drone data and the ones calculated by 
terrestrial data is shown in Table 3. 

 

Table 2- Analysis of variance of seed establishment indices for ground and aerial data 

Source of 
variation 

df 

Multiple index Quality of feed index Miss index Precision index 

Terrestrial drone Terrestrial drone Terrestrial drone Terrestrial drone 

F F F F F F F F 

Replication 2 0.30
ns

 0.25
ns

 2.02
ns

 0.08
ns

 3.40
ns

 0.08
ns

 0.19
ns

 1.89
ns

 
Residue 

(R) 
2 1.16

ns
 1.35

ns
 0.85

ns
 0.22

ns
 0.80

ns
 0.16

ns
 0.16

ns
 0.44

ns
 

Position 
(P) 

1 2.05  
ns

 1.38
ns

 4.43
ns

 0.07
ns

 3.78
ns

 0.20
ns

 0.71
ns

 0 
ns

 

Velocity 
(V) 

1 3.94
ns

 5.38
ns

 5.61
ns

 1.23
ns

 3.35
ns

 0.53
ns

 0.68
ns

 0.15
ns

 

RP 2 0.18
ns

 1.43
ns

 0.30
ns

 0.66
ns

 0.38
ns

 0.40
ns

 1.01
ns

 1.03
ns

 
RV 2 0.57

ns
 1.35

ns
 1.70

ns
 1.32

ns
 1.76

ns
 0.91

ns
 0.02

ns
 2.06

ns
 

PV 1 0.71
ns

 1.38
ns

 0.01
ns

 2.26
ns

 0.91
ns

 1.69
ns

 1.44
ns

 1.22
ns

 
RPV 2 1.09

ns
 1.43

ns
 0.04

ns
 2.67

ns
 1.48

ns
 2.07

ns
 0.14

ns
 0.08

ns
 

Error 12         
ns 

means no significant difference at P≤0.01 
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Table 3- Comparison of means of seed establishment indices for ground and aerial data 

Plot Index, % 
Terrestrial  
20-8-2016 

Drone  
20-8-2016 

Deviation I 
Drone  

27-8-2016 
Deviation II 

R1P1V1 

Multiple index 6.68 0.00
*
 +6.68 0.00

*
 +6.68 

Quality of feed 
index 

79.74 74.56 +5.18 60.48 +19.26 

Miss index 13.57 25.43 -11.86 39.52 -25.95 

Precision index 25.89 22.42 +3.47 18.03 +7.86 

R1P1V2 

Multiple index 9.51 3.84 +5.67 0.00
*
 +9.51 

Quality of feed 
index 

68.15 52 +16.15 49.05 +19.1 

Miss index 22.34 44.16 -21.82 50.95 -28.61 

Precision index 26.52 24.96 +1.56 19.31 +7.21 

R1P2V1 

Multiple index 7.67 0.00
*
 +7.67 0.00

*
 +7.67 

Quality of feed 
index 

74.95 63.22 +11.73 53.19 +21.76 

Miss index 17.37 36.78 -19.41 46.81 -29.44 

Precision index 24.39 21.69 +2.7 15.50 +8.89 

R1P2V2 

Multiple index 12.88 0.00
*
 +12.88 0.00

*
 +12.88 

Quality of feed 
index 

65.94 72.98 -7.04 58.25 +7.69 

Miss index 21.36 28.14 -6.78 40.65 -19.29 

Precision index 26.38 19.93 +6.45 20.05 +6.33 

R2P1V1 

Multiple index 7.57 0.00
*
 +7.57 0.00

*
 +7.57 

Quality of feed 
index 

76.71 66.97 +9.74 48.98 +27.73 

Miss index 15.71 33.03 -17.32 51.01 -35.3 

Precision index 23.67 21.25 +2.42 14.10 +9.57 

R2P1V2 

Multiple index 9.95 0.00
*
 +9.95 0.00

*
 +9.95 

Quality of feed 
index 

78.01 73.61 +4.4 47.86 +30.15 

Miss index 12.04 26.39 -14.35 52.14 -40.1 

Precision index 23.15 18.99 +4.16 21.54 +1.61 

R2P2V1 

Multiple index 12.82 0.00
*
 +12.82 0.00

*
 +12.82 

Quality of feed 
index 

68.67 64.64 +4.03 52.42 +16.25 

Miss index 18.51 35.36 -16.85 47.58 -29.07 

Precision index 25.53 22.96 +2.57 17.44 +8.09 

R2P2V2 

Multiple index 12.18 0.00
*
 +12.18 0.00

*
 +12.18 

Quality of feed 
index 

68.65 65.89 +2.76 59.60 +9.05 

Miss index 19.51 34.11 -14.6 37.06 -17.55 

Precision index 27.64 19.01 +8.63 19.16 +8.48 

R3P1V1 

Multiple index 6.60 0.00
*
 6.60 0.00

*
 +6.60 

Quality of feed 
index 

83.89 73.83 10.06 56.94 +26.95 

miss index 9.49 26.17 -16.68 43.06 -33.57 

precision index 25.69 17.32 +8.37 17.74 +7.95 

R3P1V2 

multiple index 7.15 1.80 +5.35 0.00
*
 +7.15 

quality of feed 
index 

73.73 63.54 +10.19 50.39 +23.34 

Miss index 19.12 34.65 -15.53 49.61 -30.49 

Precision index 24.27 23.86 +0.41 16.43 +7.84 

R3P2V1 

Multiple index 3.33 0.00
*
 +3.33 0.00

*
 +3.33 

Quality of feed 
index 

78.44 71.39 +7.05 54.52 +23.92 

Miss index 18.22 30.16 -11.94 45.48 -27.26 

Precision index 24.08 21.71 +2.37 16.32 +7.76 

R3P2V2 

Multiple index 12.97 1.85 +11.12 0.00
*
 +12.97 

Quality of feed 
index 

69.14 63.89 +5.25 61.18 +7.96 

Miss index 17.89 34.26 -16.37 38.81 -20.92 

Precision index 27.05 24.13 +2.92 16.09 +10.96 

*: Aerial imagery partially failed to provide data needed for computing this index 
R1= 60% CRC; R2=45% CRC; R3=30% CRC; P1= on-bed; P2= in-furrow; V1=4km h

-1
; V2=8km h

-1 
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Examination of Table 3 shows that aerial 
imagery partially failed to provide data needed 
for computing multiple index. As can be seen 
from this table for most of the indices studied 
(except multiple index) data collected from 
drone imagery could give values more or less 
equal to those from ground data, however 
these values are either underestimated or 
overestimated as compared  to the control 
(indices computed from ground data). To 
examine the extent of difference between each 
index as computed by ground or aerial data 
sources, drone index data were deducted from 
its corresponding values (columns 5 and 7 
Table 3). Careful inspection of data reported in 
columns 5 and 7 indicates that for miss index 
drone imagery gives higher values and for 
other two indices (quality of feed index and 
precision) the drone imagery gives lower 

values. Fortunately for all treatments similar 
conclusions could be drawn.  
III. Emergence Rate Index 

Analysis of variance of data on ERI 
indicates that only residue levels and planting 
position affect this index (Table 4). Further 
analysis was performed (Table 5) to seek for 
any difference between treatments and their 
interactions. The comparison showed that 
amounts of CRC and two planting schemes; 
on-bed and in-furrow had significant effect on 
rate of corn emergence and this maybe be due 
to the ability of CRC in maintaining soil 
moisture and also presence of more water in 
furrows. Speed had no significant effect on 
this index confirming the ability of the 
modified corn planter to perform well at 
various forward speeds.  

Table 4- Analysis of Variance of ERI 

Source of variation df 
Sum of Squares 

(SS) 
Mean Square 

(MS) 
F 

Replication 2 45.78 22.89 1.12
ns 

Residue 2 336 168 8.24
**

 
Position 1 297.9 297.9 14.61

** 

Velocity 1 46.04 46.04 2.26
ns 

RP 2 7.34 3.67 0.18
ns 

RV 2 1.99 0.99 0.05
ns 

PV 1 6.25 6.25 0.31
ns 

RPV 2 0.97 0.48 0.02
ns 

Error 12 244.70 20.39  
Total 35 1278.36   

** Significant difference at P≤0.01 

Table 5- Duncan's multiple range test for ERI% 

Plot ERI% mean 
Overall effect of residue × 

planting position 
Overall effect of 

residue level 

R1P1V1 19.37
abc

 
19.84

ab
 

22.34
a
 

R1P1V2 20.32
abc

 

R1P2V1 23.10
ab

 
24.84

a
 

R1P2V2 26.59
a
 

R2P1V1 14.60
bc

 
15.79

bc
 

18.41
a
 

R2P1V2 16.98
abc

 

R2P2V1 19.37
abc

 
21.03

ab
 

R2P2V2 22.70
ab

 

R3P1V1 10.87
c
 

11.35
c
 

14.86
a
 

R3P1V2 11.83
c
 

R3P2V1 17.14
abc

 
18.37

abc
 

R3P2V2 19.60
abc

 

a b c: Means with the same letter are not significantly different at P≤0.01 
R1=untouched; R2= raked and baled out; R3= well grazed; P1= on-bed; P2= in-furrow; V1= 4 km h

-1
; V2= 8 kmh

-1
 

Means of ERI% have been statistically 
compared in Table 5. This table shows that 

treatment R1P2V2 corresponds to the 
maximum ERI% in our study. While the 
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minimum ERI was noticed for treatment 
R3P1V1. Table 5 shows that as speed is 
changed from V1 to V2 there is a considerable 
increase in percent ERI throughout all 
processed data. Although significant 
difference exists between all six data points in 
this table it can be seen that as we move our 
planting position from on-bed scheme to in-
furrow scheme increasing change occurs in our 
ERI values. Although not necessarily in a 
significant manner. Overall effects of residue 
levels on ERI in our study has also been dealt 
with in Table 5. Although not significant, a 
decreasing effect was noticed for decreasing 
the residue level. As speed increases from V1 
to V2 there is a considerable increase in ERI 
throughout all 12 plots (Fallahi and Raoufat, 
2008; Dadi and Raoufat, 2012; Nejadi and 
Raoufat, 2013).  

Conclusions 

An acceptable linear correlation with 
0.94<R<0.98 existed between seedling 
spacing, obtained from terrestrial and aerial 
measurements. Therefore it can be concluded 
that drone imagery can be used as a reliable 
tool for monitoring planter performance in the 
residue covered fields. This study results are in 
line with those of Zhang et al. (2018) and 
Varela et al. (2018). We obtained satisfactory 
results from experimental sites covered with 
considerable previous residues. It should be 
mentioned that the experimental site of Zhang 
et al. (2018) and Varela et al. (2018) was clear 
of ample residue experienced in this study. 
The study showed that none of the 
establishment indices have been significantly 
affected by the sources of variation for both 
terrestrial and aerial data sources, therefore 
stand establishment indices can be estimated 

using aerial imagery data sources with no 
significant loss of accuracy. It could be seen 
that for most of the indices (except multiple 
index), data collected from drone imagery 
gives values which slightly underestimated or 
overestimated indices as compared to the 
control (indices computed from ground data); 
for miss index drone imagery gives higher 
values and for other two indices (quality of 
feed index and precision) the drone imagery 
gives lower values. Fortunately for all 
treatments similar conclusions could be drawn. 
The CRC and planting scheme had significant 
effects on ERI, which is logical because seed 
emergence needs optimum temperature and 
humidity and presence of crop residue retains 
soil water and keeps soil temperature suitable 
for seed emergence. In-furrow planting and 
planting on higher levels of residue resulted in 
conditions which were more favorable for 
higher ERI. The maximum and minimum ERI 
were noticed for treatment having residue level 
of 60% planted in-furrow at forward speed of 
8 kmh

-1
(R1P2V2) and treatment having 

residue level of 30% planted on-bed at 4 kmh
-

1
(R3P1V1), respectively. It is recommended 

that for better results aerial imagery be 
confined to days seedlings have 2-3 fully 
expanded leaves and the field sprayed for 
eradicating weeds. However employing state-
of-the-art cameras and existence of less 
residue are a plus. 
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یحفاظتیبااستفادهازکشاورزستمیاصلاحشدهدرسیکارندهکیعملکردپایشیسنجامکان

 نیبدونسرنشیماهایهواپریتصاو

2رئوفتحسینمحمد،*1زهراکاوسی
 

 61/61/6931تاریخ دریافت: 
 39/31/6931پذیرش:  تاریخ

 دهیچک
درصد، دو طرح کاشت  13و 54، 93 یایگندم )سه سطح پوشش بقا یایاز بقا دهیپوش نیذرت در زم میکارنده کشت مستق کیعملکرد  ،مقاله نیدر ا

 ییتوانا یمطالعه بررس نیشد. هدف از ا یابیارز ییو هوا ینیمشاهدات زم قیبر ساعت( از طر لومتریک 8و  5سرعت کاشت  ،یپشته و داخل جو یرو
 یها عملکرد کارنده بود. داده تیفیک یابیارز جهیذرت و در نت یها بوته نیفواصل ب صیتشخ یبرا نیبدون سرنش ی گرفته شده توسط پرنده ریتصاو
 نیدقت و همچن ه،یتغذ تیفینکاشت، ک ،ییچندتا یها استقرار بذر شامل شاخص یها محاسبه شاخص یبرا ییهوا ریو تصاو نیشده از زم یآور جمع

متر بر پیکسل( نتایج خوبی با توجه به اهداف ما  میلی 4/5متری ) 63تصاویر اخذ شده از ارتفاع استفاده شد.  ،هر پلات یبرا یزن جوانه رعتشاخص س
ذرت وجود  یها بوته نیفاصله ب ییو هوا ینیزم یها داده انی( م38/3 تا 35/3بین  همبستگی بی)ضر یقابل قبول ینشان داد که همبستگ جینتاداشت. 

 ریتصاو یها باشد. داده یم یزن نهسرعت جوا نیاستقرار بذر و تخم یابیارز یبرا یانتخاب مناسب ییهوا یبردارریگرفت که تصو جهیتوان نت یدارد و م
لازم  یها زد و نتوانست داده نیتخم ینیزم یها داده جیاز نتا شتریشاخص نکاشت را ب ریو دقت را کمتر و مقاد هیتغذ تیفیک یشاخص ها ریمقاد ییهوا
 ها فراهم کند.  برگ یپوشان محصول و هم فیرد نیهرز ماب یها حضور علف ر،یتصاو نییدقت پا لیدل هرا ب ییمحاسبه شاخص چندتا یبرا

 استقرار بذر یها شاخص ،ییهوا یبردارریتصو ا،یبقا یپوشش سطح ن،یپرنده بدون سرنش :یدیکلهایواژه
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