با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مکانیک بیوسیستم، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

2 گروه مهندسی صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

مواد غذایی از ترکیبات مختلفی تشکیل‌شده‌اند و بعد از مدتی عمر مفید خود را از دست می‌دهند و یکی از روش‌های افزایش ماندگاری مواد غذایی فرآیند حرارتی می‌باشد، ازاین‌رو در این تحقیق یک دستگاه گرمایش اهمیک ساخته شد تا فرآیند حرارت‌دهی انجام شود. در این فرآیند سه گرادیان ولتاژ ورودی (V cm-1 8.33، 10.83 و 13.33) و سه درصد کاهش وزن نمونه (10، 20 و 30 درصد) نسبت به وزن کل انتخاب گردید. طی فرآیند حرارتی روند بازده انرژی، بازده اکسرژی، اکسرژی تلف‌شده و پتانسیل بهبود بررسی شد. تمامی آزمایش‌ها در سه تکرار انجام گرفت و نتایج با استفاده از نرم‌افزار SAS برای بررسی آماری در آزمایش فاکتوریل در قالب طرح کاملاً تصادفی تجزیه ‌و تحلیل شد. با توجه به نتایج به‌دست‌آمده بیشترین مقدار بازده انرژی و اکسرژی در گرادیان ولتاژV cm-1 13.33و برای پتانسیل بهبود و اکسرژی تلف‌شده در گرادیان ولتاژ 8.33 می‌باشد. بیشترین بازده انرژی 91.16% در درصد کاهش وزن 10% و برای بازده اکسرژی 59.51% در درصد کاهش وزن 30% بوده است و بیشترین مقدار اکسرژی تلف‌شده و پتانسیل بهبود در درصد کاهش وزن 30% و به‌ترتیب kW 6.76 و 5.624 بوده است.

کلیدواژه‌ها

Open Access

©2020 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

1. Abdelmotaleb, A., M. M. El-Kholy, N. H. Abou-El-Hana, and M. A. Younis. 2009. Thin Layer Drying of Garlic Slices Using Convection and Combined (Convection - Infrared) Heating Modes. Misr Journal of Agricultural Engineering 26: 251-81.
2. Aghbashlo, M., H. Mobli, Sh. Rafiee, and A. Madadlou. 2013. A Review on Exergy Analysis of Drying Processes and Systems. Renewable and Sustainable Energy Reviews 22: 1-22.
3. Azadbakht, M., H. Aghili, A. Ziaratban, and M. Vehedi Torshizi. 2017. Application of Artificial Neural Network Method to Exergy and Energy Analyses of Fluidized Bed Dryer for Potato Cubes. Energy 120: 947-58.
4. Azadbakht, M., M. Vahedi Torshizi, F. Noshad, and A. Rokhbin. 2018. Application of Artificial Neural Network Method for Prediction of Osmotic Pretreatment Based on the Energy and Exergy Analyses in Microwave Drying of Orange Slices. Energy 165: 836-45.
5. Azadbakht, M., M. Vahedi Torshizi, A. Ziaratban, and H. Aghili. 2017. Energy and Exergy Analyses during Eggplant Drying in a Fluidized Bed Dryer. International Commission of Agricultural and Biosystems Engineering. 19 (3): 177-82.
6. Boldaji Torkian, M., A. M. Borghaee, B. Beheshti, and S. E. Hosseini. 2017. Investigation of Voltage Gradient and Electrode Type Effects on Processing Time, Energy Consumption and Product Quality in Production of Tomato Paste by Ohmic Heating. Journal of Agricultural Machinery 7 (1): 152-164. (In Farsi).
7. Bozkurt, H., and F. Icier. 2009a. Optimization of Ohmic Cooking of Grounded Beef-Fat Blends: Exergy Approach. Bio and Electrotechnologies 21-23.
8. Bozkurt, H., and F. Icier. 2010. Exergetic Performance Analysis of Ohmic Cooking Process. Journal of Food Engineering 100 (4): 688-95.
9. Cokgezme, O. F., S. Sabanci, M. Cevik, H. Yildiz, and F. Icier. 2017. Performance Analyses for Evaporation of Pomegranate Juice in Ohmic Heating Assisted Vacuum System. Journal of Food Engineering 207 (4): 1-9.
10. Darvishi, H., M. Azadbakht, and B. Noralahi. 2018. Experimental Performance of Mushroom Fl Uidized-Bed Drying : Effect of Osmotic Pretreatment and Air Recirculation. Renewable Energy 120: 201-8.
11. Darvishi, H., A. Hosainpour, F. Nargesi, and A. Fadavi. 2015. Exergy and Energy Analyses of Liquid Food in an Ohmic Heating Process: A Case Study of Tomato Production. Innovative Food Science and Emerging Technologies 31: 73-82.
12. Darvishi, H., A. Hosainpour, F. Nargesi, M. H. Khoshtaghaza, and H. Torang. 2011. Ohmic Processing: Temperature Dependent Electrical Conductivities of Lemon Juice. Modern Applied Science 5 (1): 209-16.
13. Darvishi, H., M. H. Khostaghaza, and Gh. Najafi. 2013. Ohmic Heating of Pomegranate Juice: Electrical Conductivity and pH Change. Journal of the Saudi Society of Agricultural Sciences 12 (2): 101-8.
14. Ghnimi, S., and N. Flach-Malaspina. 2007. Energy Efficiency of a Novel Ohmic Heating Technology by Fluid Jet Materiel and methods. Energy 49-58.
15. Halleux, D. De, G. Piette, M. Buteau, and M. Dostie. 2005. Ohmic Cooking of Processed Meats : Energy Evaluation and Food Safety Considerations. Canadian Biosystems Engineering 41-47.
16. Hammond, G. P., and A. J. Stapleton. 2001. Exergy Analysis of the United Kingdom Energy System. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 215 (2): 141-62.
17. Han, H. Z., B. X. Li, H. Wu, and W. Shao. 2015. Multi-objective shape optimization of double pipe heat exchanger with inner corrugated tube using RSM method. International Journal of Thermal Sciences 90: 173-186. https://doi.org/10.1016/j.ijthermalsci.2014.12.010.
18. Heldman, D., and M. Carmen. 2014. Encyclopedia of Agricultural, Food, and Biological Engineering, -2 Volume Set (Print Version). Crc Press.
19. Hepbasli, A. 2008. A Key Review on Exergetic Analysis and Assessment of Renewable Energy Resources for a Sustainable Future. Renewable and Sustainable Energy Reviews 12 (3): 593-661.
20. Icier, F. 2009. Influence of Ohmic Heating on Rheological and Electrical Properties of Reconstituted Whey Solutions. Food and Bioproducts Processing 87 (4): 308-16.
21. Icier, F., and C. Ilicali. 2005. Temperature Dependent Electrical Conductivities of Fruit Purees during Ohmic Heating. Food Research International 38 (10): 1135-42.
22. Jindarat, W., P. Rattanadecho, and S. Vongpradubchai. 2011. Analysis of Energy Consumption in Microwave and Convective Drying Process of Multi-Layered Porous Material inside a Rectangular Wave Guide. Experimental Thermal and Fluid Science 35 (4): 728-37.
23. Mokhtarian, M., H. Tavakolipour, and A. Kalbasi-Ashtari. 2016. Energy and Exergy Analysis in Solar Drying of Pistachio with Air Recycling System. Drying Technology 34 (12): 1484-1500.
24. Moreno, J., C. Espinoza, R. Simpson, G. Petzold, H. Nuñez, and M. P. Gianelli. 2016. Application of Ohmic Heating/vacuum Impregnation Treatments and Air Drying to Develop an Apple Snack Enriched in Folic Acid. Innovative Food Science and Emerging Technologies 33: 381-86.
25. Moreno, J., R. Simpson, M. Sayas, I. Segura, O. Aldana, and S. Almonacid. 2011. Influence of Ohmic Heating and Vacuum Impregnation on the Osmotic Dehydration Kinetics and Microstructure of Pears (Cv . Packham ’ S Triumph). Journal of Food Engineering 104 (4): 621-27.
26. Myers, R.H., D.C. Montgomery., and C.M. Anderson-Cook, 2009. Response Surface Methodology: Process and Product Optimization Using Designed Experiments 3rd Edition (3rd ed.). Wiley.
27. Sastry, sudhir k., S. Palaniappan. 1992. mathematical modeling and experimental studies on ohmic heating of liquid-particle mixtures in a static heater. Journal of Food Process Engineering 15: 241-261.
28. Sharqawy, M., V.J.H. Lienhard, S.M. Zubair. 2010. The Thermophysical Properties of Seawater : A Review of Existing Correlations and Data Accessed Thermophysical Properties of Seawater : A Review of Existing Correlations and Data. Desalination and Water Treatment 16: 354-80.
29. Tull, A. 1996. Food and Nutrition. 3rd ed. Oxford University Press.
30. Varghese, K., M. C. Shiby, Pandey, K. Radhakrishna, and A. S. Bawa. 2012. Technology, Applications and Modelling of Ohmic Heating: A Review. Journal of Food Science and Technology 51 (10): 2304-17.
31. Zell, M., J. G. Lyng, D. J. Morgan, and D. A. Cronin. 2011. Minimising Heat Losses during Batch Ohmic Heating of Solid Food. Food and Bioproducts Processing 89 (2): 128-34.
CAPTCHA Image