با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی لاتین

نویسنده

گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

هر سازمانی به‌منظور آگاهی از میزان عملکرد و مطلوبیت فعالیت واحدهای خود به یک نظام ارزشیابی جهت سنجش این مطلوبیت نیاز دارد و این موضوع برای موسسات کشاورزی از جمله کشت و صنعت‌ها اهمیت بیشتری دارد. در تحقیق حاضر، 20 واحد برداشت نیشکر انتخاب گردید. پس از مدل‌سازی بر مبنای مدل‌های CCR و BCC ورودی محور، مقادیر کارایی برای واحدهای برداشت نیشکر محاسبه گردید و با استفاده از درخت تصمیم CART به استخراج قوانین برای پیش‌بینی کارایی این واحدها پرداخته شد. نتایج مطالعه 20 واحد برداشت نیشکر در مدل CCR نشان داد که 6 واحد دارای امتیاز کارآمد و 14 واحد دارای امتیاز ناکارآمد بودند و امتیاز کارایی فنی آن‌ها در محدوده 0.73 تا 0.95 بود. نتایج مطالعه مدل BCC همچنین نشان داد که از مجموع 20 واحد برداشت نیشکر، 8 واحد دارای امتیاز کارآمد بودند. همان‌طور که مشاهده می‌شود، در مدل BCC، واحدهای بیشتری به‌عنوان واحدهای کارآمد معرفی می‌شوند و پراکندگی کمتری بین واحدهای ناکارآمد وجود دارد. همچنین، توزیع واحدهای کارآمد در مدل BCC کمتر از مدل CCR است. میانگین کارایی فنی، کارایی فنی خالص و کارایی مقیاس به‌ترتیب برابر 93، 88 و 93 درصد به‌دست آمد. همچنین دقت مدل درخت تصمیم تولید شده برای کارایی فنی و کارایی فنی خالص نیز به‌ترتیب برابر 86 و 93 درصد به‌دست آمد.

کلیدواژه‌ها

Open Access

©2020 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Banker, R. D., A., Charnes, and W. W. Cooper. 1984. Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science 30 (9): 1078-1092.
  2. Charnes, A., W. W., Cooper, and E. Rhodes. 1978. Measuring the efficiency of decision making units. European Journal of Operational Research 2: 429-44.
  3. Chiang, T. C., P. Y., Cheng, and F. Y. Leu. 2017. Prediction of technical efficiency and financial crisis of Taiwan’s information and communication technology industry with decision tree and DEA. Soft Computing 21 (18): 5341-5353.
  4. Elhami, B., Akram, and M. Khanali. 2016. Optimization of energy consumption and environmental impacts of chickpea production using data envelopment analysis (DEA) and multi objective genetic algorithm (MOGA) approaches. Information Processing in Agriculture 3: 190-205.
  5. Everinghama, Y. L., C. W., Smyth and N, G. Inman-Bamber. 2009. Ensemble data mining approaches to forecast regional sugarcane crop production. Agricultural and Forest Meteorology 149: 689-696.
  6. Ferraro, D. O., D. E. Rivero and C. M. Ghersa. 2009. An analysis of the factors that influence sugarcane yield in Northern Argentina using classification and regression trees. Field Crops Research 112: 149-157.
  7. Jenhani, I., N. B. Amor, and Z. Elouedi. 2008. Decision Trees as Possibilistic Classifiers. International Journal of Approximate Reasoning 48 (3): 784-807.
  8. Jeysenthil, K. M. S., T. Manikandan and E. Murali. 2014. Third Generation Agricultural Support System Development Using Data Mining. International Journal of Innovative Research in Science, Engineering and Technology 3 (3): 9923-9930.
  9. Kaab, , M. Sharifi, H. Mobli, A. Nabavi-Pelesaraei, and K. Chau. 2019. Use of optimization techniques for energy use efficiency and environmental life cycle assessment modification in sugarcane production. Energy 181: 1298-1320.
  10. Khai, H., and Yabe. 2011. Technical efficiency analysis of rice production in Vietnam. Journal of the International Society for Southeast Asian Agricultural Sciences 17: 135-146.
  11. Li, N., Y. Jiang, H. Mu, and Z. Yu. 2018. Efficiency evaluation and improvement potential for the Chinese agricultural sector at the provincial level based on data envelopment analysis (DEA), Energy 164: 1145-1160.
  12. Liu, X., P. Guo, and S. Guo. 2019. Assessing the eco-efficiency of a circular economy system in China’s coal mining areas: emergy and data envelopment analysis, Journal of Cleaner Production 206: 1101-1109.
  13. Medar, R. A., and S., Rajpurohit. 2014. A survey on Data Mining Techniques for Crop Yield Prediction. International Journal of Advance Research in Computer Science and Management Studies 2 (9): 59-64.
  14. Rahman, M. T., R., Nielsen, M. A., Khan, and M., Asmild. 2019. Efficiency and production environmental heterogeneity in aquaculture: A meta-frontier DEA approach. Aquaculture 509: 140-148.
  15. Ramesh, D., and B. Vishnu Vardhan. 2013. Data Mining Techniques and Applications to Agricultural Yield Data. International Journal of Advanced Research in Computer and Communication Engineering 2 (9): 3477-3480.
  16. Raorane, A. A., and R. V. Kulkarni. 2012. Data Mining: An effective tool for yield estimation in the agricultural sector. International Journal of Emerging Trends and Technology in Computer Science 1 (2): 75-79.
  17. Toloo, M., B. Sohrabi, and S. Nalchigar. 2009. A New Method for Ranking Discovered Rules from Data Mining by DEA. Journal of Expert Systems with Applications 36 (4): 8503-8508.
  18. Torgo, L. 2011. Data Mining with R: Learning with Case Studies. CRC Press, Boca Raton.
  19. Ullah, , T. Silalertruksa, P. Pongpat, and S. H. Gheewala. 2019. Efficiency analysis of sugarcane production systems in Thailand using data envelopment analysis. Journal of Cleaner Production 238: 1-11.
  20. Wanke, P., and C. P., Barros. 2016. Efficiency drivers in Brazilian insurance: A two-stage DEA meta-frontier-data mining approach. Economic Modelling 53: 8-22.
  21. Yoneyama, Y., , Suzuki, R., Sawa, K., Yoneyama, G. G. Power, and Araki, T. 2002. Increased plasma adenosine concentrations and the severity of preeclampsia. Obstetrics & Gynecology 100 (6): 1266-1270.
  22. Wu, D. 2009. Supplier selection: A hybrid model using DEA, decision tree and neural network. Expert Systems with Applications 36: 9105-9112.
CAPTCHA Image