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Abstract  

Early diagnosis of plant diseases before the occurrence of symptoms can reduce the loss of the 
yield and increase the quality of agricultural crops. It also reduces the consumption of pesticides, 
environmental risks, and the cost of production. For this reason, the objectives of the present study 
were non-destructive diagnosis of early blight of tomato plant and discrimination of the most 
important agents of early blight (A. solani and A. alternate) in the primary stages of incidence of the 
disease before appearing visual symptoms using Vis-NIR spectroscopy (400-900 nm). The spectral 
data were acquired from the leaves of the plants infected with A. solani and A. alternate, 48 hours, 72 
hours, 96 hours, and 120 hours after inoculation. To develop the recognition model based on the 
spectral data, principal components analysis (PCA) coupled with artificial neural network (ANN) was 
used. The results showed that the PCA-ANN model could diagnose the infected plants and pathogen 
species with accuracy of 93-100% for test set samples. In 96 hours after inoculation, in addition to the 
simpler model (8 PCs and 3 neurons in hidden layer), accuracy of 100% was obtained. At all times 
after inoculation, there was no error in diagnosis of the plants infected with A. solani that is more 
pathogenic and aggressive than other species, from healthy plants. Early blight in tomato plant and the 
type of pathogen before visual symptoms, without any plant sample preparation, could be diagnosed 
non-destructively (with accuracy of 93-100%) using Vis-NIR (400-900 nm) spectroscopy coupled 
with PCA-ANN. It was concluded that this technology could be used for rapid, low-cost, and early 
diagnosis of this disease in tomato plant instead of time-consuming, expensive, and destructive 
laboratory methods.  
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Introduction
1
 

Tomato (Solanum lycopersicum L.) is one 
of the most popular plants in the world and is 
grown in a wide range of climates (Song et al., 
2015). Tomatos are widely consumed because 
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of its high nutritional value and are a  
well-known source of vitamins and minerals. 
They can be eaten as raw vegetables or 
processed products (Sigmund and Gustav, 
1991; Minich et al., 2019). However, diseases 
can affect the yield and quality of tomato fruits 
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during the growing season (Chaerani and 
Voorrips, 2006). 

Early blight is a serious disease in tomato 
growing regions and has been reported under a 
wide range of climatic conditions. This disease 
weakens tomato plants and increases 
susceptibility of the plants to infection 
(Adhikari et al., 2017; Zhang et al., 2018). 
Leaf spots and leaf drop caused by early 
blight, reduce the photosynthetic area and 
increase the imbalance between nutrient 
demand and nutrient supply (Ding et al., 
2019). Failure to control early blight at the 
right time leads to foliar damage, the serious 
losses of the yield and quality, and excessive 
consumption of fungicides in tomato 
production. Therefore, early diagnosis and 
control of this disease has great economic 
importance (Ershad, 2009; Adhikari et al., 
2017).  

Species of the genus Alternaria causes 
early blight in tomato plants. Alternaria solani 
and A. alternata are the most important 
pathogenic species of the genus Alternaria in 
many countries such as Iran (Ershad, 2009; 
Zhang et al., 2018). These two species are 
different in terms of the secreted enzymes 
involved in pathogenesis. Morphologically, A. 
alternata produces small spores and A. solani 
produces larger spores than those because of 
A. alternata. In tomato plants, pathogenicity of 
A. alternata is lower than that of A. solani 
(Simmons, 2000).  

Because of climatic conditions of tomato 
cultivation, high humidity and moderate 
temperatures may spread early blight, 
especially in the southern and northern regions 
of Iran (Ershad, 2009; Babagoli and Behdad, 
2012). As mentioned above, different chemical 
fungicides are used to control early blight. 
Early diagnosis of this disease can reduce the 
consumption of fungicides. On the other hand, 
identifying the disease before its incidence 
allows the application of biological fungicides 
to prevent the spreading of the disease agents 
(Zitter et al., 2004).  

Plant diseases, are usually diagnosed by 
visual assessments or common laboratory 
methods. Common diagnostic techniques such 

as polymerase chain reaction (PCR), enzyme 
linked immune sorbent assay (ELISA), and 
fluorescence in situ hybridization (FISH) are 
destructive, time-consuming, and expensive. 
In addition, such diagnostic techniques require 
highly skilled technicians and advanced 
equipment (Xie et al., 2015; Ghanei 
Ghooshkhaneh, 2018). 

Some non-destructive methods have been 
used to classify, forecast, diagnose or warn the 
occurrence of crop diseases, and various 
models have been developed for these non-
destructive techniques. Near-infrared (NIR) 
spectroscopy as an advanced and innovative 
technology utilizes the spectral range from 780 
to 2,500 nm (12,800 cm

-1
– 4,000 cm

-1
) and 

provides internal structural information of 
organic materials in food, pharmaceutical, 
chemical, and petrochemical industries (Cen 
and He, 2007; Jamshidi et al., 2015). This 
technology coupled with the advanced 
mathematical and statistical methods has 
become a reliable, fast, and powerful non-
destructive tool for analyzing the internal 
properties of organic materials (Tey et al., 
2013; Nicolai et al., 2014). 

NIR spectroscopy equipment (with a full 
spectral range) is expensive and its use in rapid 
detection systems depends on economic 
feasibility. The equipment with a narrower 
spectral range such as visible/near-infrared 
(Vis-NIR) spectroscopy equipment are low 
cost and more economically feasible for use in 
rapid and on-line detection systems (Mouazen 
et al., 2005). Some studies have confirmed the 
fitness of Vis-NIR or NIR spectroscopy for the 
classification of the leaves infected with citrus 
canker (Sankaran and Ehsani, 2013), diagnosis 
of the avocado leaves infected with laurel wilt 
(Sankaran and Ehsani, 2012), diagnosis of 
virus-infected soybean (Jinendra et al., 2010), 
diagnosis of huanglongbing in citrus orchards 
(Sankaran et al., 2011), and prediction of 
disease ratings for leaf gall in sugarcane clones 
(Purcell et al., 2009). However, relatively few 
reports have been found about the non-
destructive diagnosis of crop diseases before 
the onset of symptoms. No reports have been 
found about the non-destructive diagnosis of 
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early blight on tomato plants before appearing 
visual symptoms using Vis-NIR or NIR 
spectroscopy. 

This research aimed to evaluate the 
feasibility of non-destructive method of Vis-
NIR spectroscopy for diagnosis of early blight 
diseases (A. solani and A. alternate, as the 
main agents in tomato plants in Iran) in the 
primary stages of the disease incidence before 
occurrence of visual symptoms. Moreover, 
different PCA-ANN models were also 
developed for different times of establishment 
and progression of pathogens to select 
optimum diagnosis models for diagnosing the 
disease and discrimination of pathogen type. 

Material and Methods 

Pathogenicity on tomato plants 

Susceptible tomato seedlings (cv. Peto 
Early CH), planted in trays containing peat 
moss, were transferred to 1.5-liter pots in four-

leaf stage. Ten milliliters of spore suspension 
of each of isolates of A. solani and A. alternata 
were prepared with sterile distilled water. 
Using a hemocytometer, the concentration of 
the suspensions was adjusted to 10

5
 and 10

6
 

conidia per milliliter for A. solani and A. 
alternate, respectively,. Spores were 
suspended in sterile distilled water. Plants 
were inoculated with conidia suspensions one 
month after transplanting. Each plant was 
inoculated again after 24 hours. The control 
treatment leaflets were sprayed with sterile 
distilled water. The inoculated plants were 
incubated at 20-22°C and 95% relative 
humidity (Rotem, 1994; Fulton et al., 1995). 
Figures 1(a) and 1(b) show the symptoms of 
the disease in the leaves inoculated with A. 
alternata and A. solani 10 to 12 days after 
inoculation. 

 

        
Fig.1. Symptoms of the disease in A. solani–inoculated leaf (a) and A. alternata–inoculated leaf (b) 

10 to 12 days after inoculation. 

 

Spectral data collection 
Spectroscopy System 

The Vis-NIR spectral data of tomato leaves 
were acquired using a V700 UV-Vis-NIR 
spectrophotometer (OPTC, Co., Iran) equipped 
with a CCD sensor (Toshiba, Ltd., Japan) that 
can operate in the spectral range of 350-1,100 
nm at the resolution of 1.8 nm. The light 
source was a 120W tungsten halogen lamp and 
the spectroscopy mode was reflectance one. 

Two optical fibers, which had a 45-degree 
angle with the leaf sample, were used to guide 
the light from the source to the leaf and from 
the leaf to the spectrophotometer. 
Samples and Spectroscopy times  

Collecting the spectral data was performed 
at four times after inoculation, including two 
days (48 hours), three days (72 hours), four 
days (96 hours), and five days (120 hours) 
after inoculation. Occurrence of symptoms of 

a b 
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early blight on tomato plants depends on many 
factors and under the best condition; the 
symptom is visualized for five to seven days 
after conidia establishment on the leaves 
(Sherf and MacNab 1986; Chaerani et al., 
2007). 

The lower and upper leaves of each plant 
were excluded from the experiment. For each 
pathogenic species, the spectral data were 
acquired from 50 leaves of the infected plants 
(from 4-6 plants), in each day after 
inoculation. On the fifth day (120 hours after 
inoculation), five spectral samples of the 
leaves infected with A. solani were lost 
because of incorrect spectra collection, and the 
total number of the samples infected with A. 
solani in this day was 45. In each day of 
spectroscopy, along with acquiring the spectra 
from the inoculated samples, the spectral data 
from the leaves of two healthy plants (control 
treatment) were also acquired (approximately 
23 leaves per day). In total, the number of 
spectral samples of healthy leaves was 91. 
Therefore, the total number of samples on each 
of the second, third, and fourth days after 
inoculation was 191, and in the fifth day was 
186. For each leaf sample, five measurements 
from five different points were obtained. The 
average of these five spectra was used as a 
representative spectrum for one leaf sample.  
PCA-ANN models 

In this experiment, the ANN method was 
used for the classification of A. alternate-
inoculated, A. solani-inoculated, and healthy 
leaves. An ANN is a non-linear computing 
model inspired by biological neural networks 
(Salchenberger et al., 1992; Kia, 2010; Castro 
et al., 2017). ANNs modeling technique have 
been widely used for prediction and 
classification based on the spectral data 
(Mireei et al., 2010; Pan et al., 2016; Dai et 
al., 2015; Yoplac et al., 2019). 

Multilayer feed forward network with back-
propagation (BP) learning algorithm, which is 
the most popular neural network, was used for 
the recognition of the leaf samples. One BP 
network is a feed forward multilayer 
perceptron network that consists of one input 
layer with the neurons as independent 

variables, one or more hidden layers, and one 
output layer with the neurons as a dependent 
variable (leaf classes in this study) (Kia, 2010; 
Omid et al., 2010). In this study, a single-
hidden layer ANN was established for 
classification. The transfer function was 
tansig, the training function was trainscg, and 
epoch was 1,000. Wavelengths shorter than 
400 and longer than 900 nm were eliminated 
to reduce the noise and thus, the spectral range 
of 400 to 900 nm was used for developing the 
model. 

The spectral data in the range of 400-900 
nm was used as the input layer in ANN, but 
they were not directly used because of the 
large number of the data for each spectrum 
sample. In order to reduce the data in each 
spectrum, PCA was used. PCA is a well-
known technique for the data mining and is 
commonly used in spectroscopy (Wold et al., 
2101). PCA is an orthogonal linear 
transformation that transforms the spectral 
data to a new coordinate system whose axes 
are the PCs. In this transformation, the greatest 
variance of the data comes to lie on the first 
coordinate (called the first principal 
component), the second greatest variation on 
the second PC, and so on. This process 
continues until the cumulative variance of the 
principal components is equal to 100% of the 
variance of the original data. In PCA, the data 
components that have the greatest effect on the 
variance, are selected and can be used instead 
of the original data and reduce the data volume 
(Nicolai et al., 2007). It is clear that the first 
component, then the second component, and 
the subsequent components have the greatest 
impact on recognition, respectively. The 
optimum number of PCs in the PCA-ANN 
models was chosen based on the cumulative 
explained data variance (Brown et al., 2005).  

For the classification of the leaves in each 
day based on PCs, the samples were divided 
into a training (70%), validation (15%), and 
test (15%) subsets, randomly. The training 
datasets were used to fit the model, and the 
validation datasets were used to stop the 
training ones and avoid overfitting when the 
error in the validation datasets increases. The 

https://en.wikipedia.org/wiki/Biological_neural_network
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test datasets were used to evaluate the model 
fitted at the training stage. In this paper, the 
developed models were also evaluated by 
training and validation subsets, in addition to 
evaluation by test subset. 

The optimum number of neurons in the 
hidden layer was determined by trial and error 
and examining several networks with the 
different number of neurons in the hidden 
layer, and finding the optimum model. A 3-
byte binary code was assumed for the output 
vectors of three output neurons (Kia, 2010; 
Omid et al., 2010). Therefore, the output 
vectors (100), (010), and (001) were denoted 
as the healthy leaf, A. alternate-inoculated 
leaf, and A. solani-inoculated leaf, 
respectively. 

In the PCA-ANN models, of the variance 
explained by PCs should be at least 85% of 
variance of the original data (Mireei et al., 

2010). The models with the lower number of 
PCs have lower classification accuracy, while 
using the higher number of PCs makes more 
complex models without a significant 
difference in the discrimination power (Nicolai 
et al., 2007). In this study, the maximum 
number of PCs as the input for ANN was 
considered 10. Finally, the optimum number of 
PCs as the input for ANN was selected by trial 
and error. These PCs were selected instead of 
the original spectral data. 

For each time after inoculation (48 hours, 
72 hours, 96 hours, and 120 hours), one PCA-
ANN model was developed to discriminate 
healthy, A.  -infected and A. solani -infected 
leaves. In this paper, principal components 
analysis and BP-ANN were carried out using 
Matlab12. 

The procedure of this study is shown in 
Figure 2.  

 
Fig.2. Research procedure 
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Results and Discussion 

Effect of early blight pathogens and time on the 
absorbance spectra 

Figures 3(a), (b), (c), and (d) show the 
mean absorbance spectrum of healthy, A. 
alternata–inoculated, and A. solani-inoculated 
leaves in 48 hours, 72 hours, 96 hours, and 120 
hours after inoculation at the wavelength range 
of 400-900 nm, respectively. For the better 
interpretation of spectra, absorbance values 
(Log (1/R)) of spectra are shown instead of 
raw spectra in Figure 2 (Azadshahraki et al., 
2018). 

All spectra had two broad peaks around 470 
nm and 680 nm, which were due to the 
chlorophyll of the photosystem I and II 
reaction centers (Taiz and Zeiger, 2002). In 48 
hours and 72 hours after inoculation, the mean 
absorbance spectra were clearly very similar. 
As mentioned above, spores of A. solani are 
larger than those of A. alternate. In 48 hours 
after inoculation, the absorption (height of 
spectrum) of A. solani samples was lower than 
that of other samples and this might have been 
due to the greater light reflection because of 
large spores. Over time, as the spores multiply 
and grow, the reaction between spores and 
leaves increases, and the light absorption 
(height of the spectrum) increases in both 
species of diseases. At other times after 
inoculation (96 hours and 120 hours after 
inoculation), absorbance spectra of the 
inoculated leaves changed and the shape of the 
second peaks was quite different from that of 
the second peaks of spectra in the second and 
third day after inoculation. The height of the 
mean absorbance spectra of the inoculated 
leaves was increased in the fourth and fifth 
days after inoculation, and these means were 
higher than the mean absorbance spectrum of 
healthy leaves. These changes in the spectra of 
the infected leaves and the differences between 
the spectra of the infected and healthy leaves 
in fourth and fifth days could be due to the 
impact of diseases on the leaves and might 
have been effective in discriminating the 

infected leaves. The absorption increment in 
spectra of both A. alternata–infected and A. 
Solani–infected leaves in 96 hours and 120 
hours after inoculation indicated that early 
blight disease increased the absorption of 
chlorophyll over time, and this increment 
around 470 nm was more than around 680 nm. 
In general, the height changes in A. solani-
infected spectrum was more than that in A. 
alternate-infected spectrum. Because the 
pathogen (Alternaria spp.) is a necrotrophic 
fungus, within 48 to 72 hours after inoculation, 
it is possible that the fungal spores could be 
plasmolyzed and the contents of them could be 
transferred to the host cells. The reduction in 
the spore volume caused in order that the 
spectrum of the inoculated leaves could be 
closer to the control treatment leaves. 
However, 72 hours after inoculation, the 
intracellular host changes were begun, and the 
spectrum absorption increased in the infected 
leaves. Research has shown that members of 
the genus Alternaria cause quiescent 
infections, in which the fungus enters the 
tissue where it remains dormant until changed 
conditions favor infection (Thomma, 2003). 
Diagnosis of healthy and infected plants at each 
time after inoculation 

Tables 1, 2, 3, and 4 show the results of the 
classification of training, validation and test 
sample sets of healthy, A. alternate-infected, 
and A. solani-infected leaves of tomato plants 
for 48 hours, 72 hours, 96 hours, and 120 
hours after inoculation using Vis-NIR 
spectroscopy (400-900 nm) and the PCA-ANN 
model. According to these Tables, the 
optimum developed PCA-ANN model for 
each time after inoculation had the specific 
number of PCs as well as neurons in the 
hidden layer. All selected PCs could explain 
more than 99% of the variance of the original 
data and had high power of discriminating the 
infected leaves. In the second and third day 
after inoculation, the models were more 
complex (had more PCs and more hidden layer 
neurons). 
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Fig.3. The mean absorbance spectrum (Log (1/R)) of healthy, A. alternata–inoculated, and A. 
solani-inoculated leaves of tomato plants in 48 hours (a), 72 hours (b), 96 hours (c), and 120 hours 

(d) after inoculation 
 
As mentioned above, with the impact of 

pathogens on the inoculated leaves and 
deformation of their absorbance spectra over 
time, fewer PCs were needed to develop the 
best model. At all times after inoculation, the 
developed models were able to accurately 
discriminate healthy, A. alternate-infected, and 
A. solani-infected leaves from each other. In 
48 hours, 72 hours, and 120 hours after 
inoculation, the discrimination accuracy were 
98.5%, 99.2%, and 98.5% for training sample 
sets and 96.6%, 100%, and 100% for 
validation sample sets. These models were 
used for diagnosis of test sample sets, and 
accuracy of 100%, 93.1%, and 96.4% were 
obtained. In 96 hours after inoculation, the 
discrimination accuracy for all subsets was 

100%. In other words, Vis-NIR spectroscopy 
with the developed PCA-ANN models could 
diagnose early blight-infected leaves and the 
type of pathogen at the accuracy of 93. 1%-
100% of test samples in the early stages of 
disease before visual symptoms. The lowest 
accuracy in the test samples was related to 72 
hours after inoculation, which the absorbance 
spectra of healthy samples and both infected 
samples were more similar. For all samples, 
discrimination accuracies were 98.4%, 98.4%, 
100%, and 98.4% in the second, third, fourth, 
and fifth days after inoculation, respectively. 
The results showed that at all times after 
inoculation and in all subset samples, there 
was no error in the discrimination of the leaves 
infected with A. solani pathogen (which is 
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more pathogenic and more damaging in 
tomato plants) and healthy leaves. 

Occurrence of symptom of early blight 
disease in tomato plants depends on many 
factors, including temperature, relative 
humidity, and host sensitivity. Two days after 
infection, Alternaria conidia penetrates the 
cells by producing germ tube. After 
penetration and colonization, the pathogen 
degrades the host cell wall by enzymes, and 
the lesions become visible three days after 

infection. Under the best condition, the 
symptom visualized in five to seven days after 
the establishment of conidia in the leaves 
(Sherf and MacNab 1986; Chaerani et al., 
2007). After this relatively short period, the 
disease cycle allows a polycyclic infection and 
rapidly spreads in all leaves. Early diagnosis 
can be prevented disease incidence before 
colonization and spore production, allowing a 
polycyclic infection (Sherf and MacNab 
1986). 

 

Table 1- Diagnosis results in training, validation and test sets of optimum PCA-ANN model at 48 
hours after inoculation  

The 
optimum 
number 
of PCs 

The 
optimum 

number of 
neurons in 

hidden 
layer 

Subsets Leaf class 

 
Diagnosis results 

 Accuracy 
(%) 

Overall 
accuracy 

(%) 
No. Healthy A. alternata   A. solani 

10 14 

Training 

Healthy 67 67 0 0 100  

A. alternata   33 2 31 0 93.9 98.5 

A. solani  33 0 0 33 100  

 Healthy 10 10 0 0 100  

Validation A. alternata  10 1 9 0 90 96.6 

 A. solani  9 0 0 9 100  

 Healthy 14 14 0 0 100  

Test A. alternata  7 0 7 0 100 100 

 A. solani  8 0 0 8 100  

All - - - - - - 98.4 

 

Table 2- Diagnosis results in training, validation and test sets of optimum PCA-ANN model at 72 
hours after inoculation  

The 
optimum 
number 
of PCs 

The 
optimum 

number of 
neurons in 

hidden 
layer 

Subsets Leaf class 

 
Diagnosis results 

 Accuracy 
(%) 

Overall 
accuracy 

(%) 
No. Healthy A. alternata A. solani 

10 9 

Training 

Healthy 59 59 0 0 100  

A. alternata  40 0 40 0 100 99.2 

A. solani  34 0 1 33 97.1  

 Healthy 21 21 0 0 100  

Validation A. alternata  4 0 4 0 100 100 

 A. solani  4 0 0 4 100  

 Healthy 11 10 1 0 90.9  

Test A. alternata  6 0 6 0 100 93.1 

 A. solani  12 0 1 11 91.7  

  All - - - - - - 98.4 
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Table 3- Diagnosis results in training, validation and test sets of optimum PCA-ANN model at 96 
hours after inoculation  

The 

optimum 

number 

of PCs 

The 
optimum 
number 

of 
neurons 

in hidden 
layer 

Subsets Leaf class 

Diagnosis results 

Accuracy 

(%) 

Overall 

accuracy 

(%) 
No. Healthy A. alternata   A. solani  

8 3 

Training 

Healthy 63 63 0 0 100 100 

A. alternata   37 0 37 0 100 100 

A. solani  33 0 0 33 100 100 

 Healthy 16 16 0 0 100 100 

Validation A. alternata  7 0 7 0 100 100 

 A. solani  6 0 0 6 100 100 

 Healthy 12 12 0 0 100 100 

Test A. alternata  6 0 6 0 100 100 

 A. solani  11 0 0 11 100 100 

All - - - - - - 100 

 

Table 4- Diagnosis results in training, validation and test sets of optimum PCA-ANN model at 120 
hours after inoculation  

The 
optimum 
number 
of PCs 

The 
optimum 

number of 
neurons in 

hidden 
layer 

Subsets Leaf class 

 
Diagnosis results 

 Accuracy 
(%) 

Overall 
accuracy 

(%) 
No. Healthy A. alternata  A. solani 

9 9 

Training 
Healthy 61 61 0 0 100  

A. alternata  38 0 37 1 97.4 98.5 
A. solani  31 0 1 30 96.8  

 Healthy 14 14 0 0 100  
Validation A. alternata  8 0 8 0 100 100 

 A. solani  6 0 0 6 100  
 Healthy 16 16 0 0 100  

Test A. alternata  4 0 4 0 100 96.4 
 A. solani  8 0 1 7 87.5  

All - - - - - - 98.4 

 
In present study, the accuracy of using Vis-

NIR spectroscopy and the PCA-ANN model 
for early diagnosis of the tomato leaves 
infected with early blight was close to that of 
diagnosis of A. alternata in the eggplant leaves 
(over 88.46% in the testing sets) using the 
hyperspectral image technique reported by Xie 
and He (2016). Yin and Zhao (2013) reported 
the accuracy of 80.68% for recognition of 
early blight in tomato plants using the 
hyperspectral data and the support vector 
machine. Atherton et al. (2015) reported that 
hyperspectral spectroscopy could discriminate 
more heavily the potato plants diseased with 

early blight (A. solani) from healthy potato 
plants in different growth stages. Atherton et 
al. (2017) used hyperspectral remote sensing 
spectroscopy for advanced diagnosis of early 
blight (A. solani) in potato plants prior to 
visual disease symptoms, and reported that the 
technique could distinguish moderately the 
diseased plants from healthy and minimally 
diseased plants. An investigation of the 
potential of using hyperspectral imaging for 
diagnosing early blight and late blight diseases 
in tomato leaves by Xie et al. (2015) showed 
that using a hyperspectral imaging technique 
and extreme learning machine (ELM) 
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classifier model or successive projection 
algorithm (SPA) could excellently diagnose 
the diseases at the accuracy of 97.1-100% in 
the testing sets. Diagnosis accuracy of present 
study for test set samples (93.1-100%) was 
close to the results reported by Xie et al. 
(2015). However, different studies for non-
destructive diagnosis of diseases have different 
results because of different instruments, stage 

of diseases, plant types and varieties. Because 
of the high cost of hyperspectral imaging 
equipment and good results of present study, 
Vis–NIR spectroscopy can be recommended 
for diagnosis of early blight disease prior to 
visual symptoms. The results of this research 
compared to other studies are summarized in 
Table 5. 

 
Table 5- Comparison of the performance of early and nondestructive diagnosis of early blight 

disease in this study with other studies  
Research Vegetable Accuracy (%) 

Tis research Tomato 93.1-100 
Xie et al., 2015 Tomato 97.1-100 

Gold et al., 2020 Potato 89-95 
Xie and He, 2016 Eggplant 88.46 

Yin and Zhao, 2013 Tomato 80.68 

 
Conclusion 

This study evaluated the feasibility of 
utilizing Vis–NIR spectroscopy (range of 400-
900nm) using a CCD spectrometer coupled 
with the PCA-ANN modeling method for early 
and non-destructive diagnosis of early blight 
disease in tomato plants and diagnosis of type 
of pathogen (A. alternate and A. solani) before 
the appearance of the symptoms. The results of 
this study indicated that, when optimum PCs 
and optimum number of neurons in the hidden 
layer of ANN were selected, the PCA-ANN 
model could accurately diagnose the infected 
plants and type of pathogen (accuracy of 93.1-
100%). Over time, the shape of the infected 
spectra changed and this change was effective 
in diagnosing the infected leaves. At all times 
after inoculation, the developed models could 
discriminate A. solani-infected plants from 
healthy leaves at the accuracy of 100%. This 
was a noticeable result because of more 
pathogenicity and more damage of A. solani 

species. On fourth day after inoculation, Vis-
NIR spectroscopy combined with the PCA-
ANN computing method could diagnose the 
infected leaves and type of pathogen without 
any error by the simpler model. Therefore, it 
was concluded that Vis-NIR spectroscopy 
could be utilized for rapid and non-destructive 
early diagnosis of early blight on tomato plants 
before visual symptoms without any plant 
sample preparation. It is recommended that 
diagnosis of other causes of tomato leaf spots, 
including manganese deficiency, and fungi of 
Septoria sp. and Cercospora sp., in which 
some cases have similar symptoms to early 
blight, be evaluated by NIR spectroscopy in 
the future research.  
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سنجی مرئی/ فروسرخ نزدیک و  فرنگی بر پایه طیف موجی گیاه گوجه تشخیص بیماری لکه

 شبکه عصبی مصنوعی قبل از ظهور علائم بیماری -های اصلی تجزیه مؤلفه
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 چکیده

تواند افت عملکرد را محصول را کاهش داده و کیفیت آن را افزایش دهد. این امر  خیص زودهنگام بیماری گیاهان قبل از وقوع علائم، میتش
شخیص غیر تخریبی بیماری دهد. هدف از انجام این تحقیق، ت محیطی و هزینه تولید را کاهش می همچنین مصرف سموم شیمیایی، مشکلات زیست

( از یکدیگر در مراحل اولیه بیماری، قبل A. solani, A. alternateزای آن ) ترین عوامل بیماری فرنگی و همچنین تشخیص مهم موجی گیاه گوجه لکه
 های گیاهان آلوده به ز برگهای طیفی ا نانومتر( بود. داده 900-000سنجی مرئی/ فروسرخ نزدیک ) از بروز علائم ظاهری، با استفاده از طیف

A. alternate  وA. solani  های  های تشخیص بر اساس داده منظور توسعه مدل ساعت بعد از تلقیح بیماری استخراج شدند. به 330 و 99، 23، 04در
توانست  PCA-ANNل ( استفاده شد. نتایج نشان داد که مدANN( همراه با شبکه عصبی مصنوعی )PCAهای اصلی ) طیفی، از تجزیه مؤلفه

تر  دست آمدن مدل ساده ساعت بعد از تلقیح، علاوه بر به 99های تست شناسایی کند. در  درصد در نمونه 300-92گیاهان آلوده و نوع پاتوژن را با دقت 
های بعد از تلقیح، در  زمانهای تدوین شده، در تمامی  درصد تشخیص حاصل شد. مدل 300نرون در لایه مخفی(، دقت  2مؤلفه اصلی و  4بینی ) پیش

سنجی  باشد نسبت به گیاهان سالم، هیچ خطایی نداشتند. استفاده از طیف زایی بالایی می رای قدرت بیماریاکه د A. solaniتشخیص گیاهان آلوده با 
وژن آن را قبل از بروز علائم فرنگی و نوع پات موجی گوجه توانست بیماری لکه PCA-ANNنانومتر( همراه با  900-000مرئی/ فروسرخ نزدیک )

تواند  صورت غیر مخرب تشخیص دهد. نتایج این پژوهش نشان داد که این تکنیک می سازی گیاه، به درصد( بدون هیچ آماده 92-300ظاهری )با دقت 
 کار رود. مخرب به بر، گران و های آزمایشگاهی زمان جای روش فرنگی به هزینه و زودهنگام این بیماری گوجه برای تشخیص سریع، کم

  موجی لکه ،فرنگی سنجی فروسزخ نزدیک، گوجه های اصلی، طیف تجزیه مؤلفهواژهای کلیدی: 
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