with the collaboration of Iranian Society of Mechanical Engineers (ISME)

Document Type : Research Article-en

Authors

1 Department of Biosystems Engineering, University of Kurdistan, Sanandaj, Iran

2 Department of Biosystems Engineering, University of Shiraz, Shiraz, Iran

Abstract

The main aim of this study was to optimize the design parameters of the fruit shakers for efficient harvesting of Shengy olive. A single-degree-of-freedom spring-mass model was established to determine the natural frequency and damping coefficient of the limb. A tractor-mounted shaker that transmits vibration to limbs and fruits via a reciprocating mechanism was fabricated for field evaluation of the forced vibration modes. A 3×4 factorial experiment with a completely randomized design was conducted to investigate the effects of shaking amplitudes and frequencies on fruit removal. The shaking mode with a frequency of 10 Hz and amplitude of 80 mm transmitted the average power of 92 W to remove 95% of fruits in the field trial. This oscillation characteristic should be used to redesign the fruit shakers to pass human safety standards and efficient harvesting.

Keywords

Main Subjects

Open Access

©2021 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Adrian, P. A., R. B. Fridley, and R. B. Fridley. 1965. Dynamics and design criteria of inertia-type tree shakers. Transactions of the ASAE 8: 12-0014.
  2. Aiello, G., M. Vallone, and P. Catania. 2019. Optimizing the efficiency of olive harvesting considering operator safety. Biosystems Engineering 185: 15-24.
  3. Alzoheiry, A., M. Ghonimy, E. Abd El Rahman, O. Abdelwahab, and A. Hassan. 2020. Improving olive mechanical harvesting using appropriate natural frequency. Journal of Agricultural Engineering 51: 148-154.
  4. Amirante, P., P. Catalano, F. Giametta, A. Leone, and G. L. Montel. 2007. Vibration analysis of an olives mechanical harvesting system. Agricultural Engineering International: CIGR Journal.
  5. Babanatsas, T., D. Glavan, R. B. Merce, M. Borzan, I. Radu, and S. Maris. 2018. Harvesting olive tree using accurate vibrations generated by a robotic system. Pages 012083. IOP Conference Series: Materials Science and Engineering: IOP Publishing.
  6. Bentaher, H., M. Haddar, T. Fakhfakh, and A. Mâalej. 2013. Finite elements modeling of olive tree mechanical harvesting using different shakers. Trees 27: 1537-1545.
  7. Blanco-Roldán, G. L., J. A. Gil-Ribes, K. Kouraba, and S. Castro-García. 2009. Effects of trunk shaker duration and repetitions on removal efficiency for the harvesting of oil olives. Applied Engineering in Agriculture 25: 329-334.
  8. Blevins, R. D. 2015. Formulas for dynamics, acoustics and vibration. John Wiley & Sons.
  9. Çakmak, B., T. Saraçoğlu, F. N. Alayunt, and C. Özarslan. 2011. Vibration and noise characteristics of flap type olive harvesters. Applied Ergonomics 42: 397-402.
  10. Castro-García, S., G. L. Blanco-Roldán, J. A. Gil-Ribes, and J. Agüera-Vega. 2008. Dynamic analysis of olive trees in intensive orchards under forced vibration. Trees 22: 795-802.
  11. Chen, D., X. Du, Q. Zhang, M. Whiting, P. Scharf, and S. Wang. 2012. Performance evaluation of mechanical cherry harvesters for fresh market grade fruits. Applied Engineering in Agriculture 28: 483-489.
  12. Chen, J., Y. Wang, D. Liang, W. Xu, and Y. Chen. 2021. Design of Longitudinal Vibratory Compliant Picking Mechanism for Berry Shrub. Transactions of the ASABE: 64(4):1165-1171.
  13. Costa, N., P. Arezes, C. Quintas, and R. Melo. 2013. Vibration exposure in mechanical olive harvesting: workers’ perception. Occupational safety and hygiene. CRC Press, Boca Raton, FL, USA: 417-420.
  14. Crooke, J., and R. Rand. 1969. Vibratory fruit harvesting: a linear theory of fruit-stem dynamics. Journal of Agricultural Engineering Research 14: 195-209.
  15. Deboli, R., A. Calvo, C. Preti, and M. Inserillo. 2014a. Design and test of a device for acceleration reproducibility of hand held olive harvesters. International Journal of Industrial Ergonomics 44: 581-589.
  16. Deboli, R., A. Calvo, F. Gambella, C. Preti, R. Dau, and E. C. Casu. 2014b. Hand arm vibration generated by a rotary pick-up for table olives harvesting. Agricultural engineering international: CIGR Journal 16: 228-235.
  17. Dimarogonas, A. D. 1976. Vibration Engineering. West Group.
  18. Du, X., D. Chen, Q. Zhang, P. A. Scharf, and M. D. Whiting. 2012. Dynamic responses of sweet cherry trees under vibratory excitations. Biosystems Engineering 111: 305-314.
  19. Du, X., K. Chen, Z. Ma, C. Wu, and G. Zhang. Design, construction, and evaluation of a three-dimensional vibratory harvester for tree fruit. Applied Engineering in Agriculture 36: 221-231.
  20. El Attar, M., M. El Awady, M. Rashwan, and M. Genaidy. 2004. Physical properties effects on shaker-model harvesting of olive-trees. Pages 4-5. 12th Conference of Miser Society of Agricultural Engineering, Giza, Egypt.
  21. Ferguson, L., U. Rosa, S. Castro-Garcia, and S. Lee. 2010. Mechanical harvesting of California table and oil olives. Advances in Horticultural Science 24: 53-63.
  22. Gambella, F., F. Paschino, and C. Dimauro. 2013. Evaluation of fruit damage caused by mechanical harvesting of table olives. Transactions of the ASABE 56: 1267-1272.
  23. García, S. C., J. G. Ribes, G. B. Roldán, and J. A. Vega. 2007. Mode shapes evaluation of trunk shakers used in oil olive harvesting. Transactions of the ASABE 50: 727-732.
  24. Giametta, G., and B. Bernardi. 2010. Olive grove equipment technology. Straddling trees: mechanized olive harvests. Advances in Horticultural Science 64-70.
  25. Golpira, H. 1998. Design, development and evaluation of a tree shaker for investigation the effects of shaking amplitude and frequency on fruit detachment. M.Sc. Thesis. The University of Shiraz. (In Persian).
  26. Golpîra, H., A. Román-Messina, and H. Bevrani. 2021. Renewable Integrated Power System Stability and Control. John Wiley & Sons.
  27. Gupta, S. K., R. Ehsani, and N.-H. Kim. 2015. Optimization of a citrus canopy shaker harvesting system: Properties and modeling of tree limbs. Transactions of the ASABE 58: 971-985.
  28. Gupta, S. K., R. Ehsani, and N.-H. Kim. 2016. Optimization of a citrus canopy shaker harvesting system: Mechanistic tree damage and fruit detachment models. Transactions of the ASABE 59: 761-776.
  29. He, L., H. Fu, M. Karkee, and Q. Zhang. 2017a. Effect of fruit location on apple detachment with mechanical shaking. Biosystems Engineering 157: 63-71.
  30. He, L., H. Fu, D. Sun, M. Karkee, and Q. Zhang. 2017b. Shake-and-catch harvesting for fresh market apples in trellis-trained trees. Transactions of the ASABE 60: 353-360.
  31. Hoshyarmanesh, H., H. R. Dastgerdi, M. Ghodsi, R. Khandan, and K. Zareinia. 2017. Numerical and experimental vibration analysis of olive tree for optimal mechanized harvesting efficiency and productivity. Computers and Electronics in Agriculture 132: 34-48.
  32. Kargarpour, H., T. Tavakoli Hashjin, A. Hemmat, and B. Ghobadian. 2018. Assessment of mechanical damage on olive fruit under impact loading. Journal of Agricultural Machinery 8: 365-376. (In Persian).
  33. Lavee, S. 2010. Integrated mechanical, chemical and horticultural methodologies for harvesting of oil olives and the potential interaction with different growing systems: A general review. Advances in Horticultural Science 1000-1011.
  34. Leone, A., R. Romaniello, A. Tamborrino, P. Catalano, and G. Peri. 2015. Identification of vibration frequency, acceleration, and duration for efficient olive harvesting using a trunk shaker. Transactions of the ASABE 58: 19-26.
  35. Memari, A., H. Shamsabadi, M. Rahmati, and M. Razzaghi. 2019. Determination of damage index of olive fruit (Koroneiky variety) in different harvesting methods and times in Golestan province. Journal of Agricultural Machinery 9: 61-72. (In Persian).
  36. Moreno, R., A. Torregrosa, E. Moltó, and P. Chueca. 2015. Effect of harvesting with a trunk shaker and an abscission chemical on fruit detachment and defoliation of citrus grown under Mediterranean conditions. Spanish Journal of Agricultural Research 13: 1-12.
  37. Peça, J., A. B. Dias, A. Pinheiro, and J. Falcão. 2019. Continuous harvesting of olive orchards with wide canopies in hedge. 77th International Conference on Agricultural Engineering. Hanover, Germany, VDI-Berichte. 213-222.
  38. 2019. MAVO olive harvester. https://pellenc.com/agri/produits/mavo-olive-harvester/?lang=en.
  39. Ravetti, L., and S. Robb. 2010. Continuous mechanical harvesting in modern Australian olive growing systems. Advances in Horticultural Science 71-77.
  40. Rezaei, A., M. Loghavi, S. Kamgar, and Y. Mehdipour. 2016. Determining the most suitable frequency and shaking time for olive harvesting by a pneumatic branch shaker. Journal of Agricultural Machinery 6: 417-428. (In Persian).
  41. Rezai, A., M. Loghavi, S. Kamgar, and D. Rezaei. 2015. Design portable pneumatic branch shaker with programmable logic controller. Iranian Journal of Biosystems Engineering 46: 19-29. (In Persian).
  42. Saraçoğlu, T., B. Cakmak, C. Özarslan, and F. N. Alayunt. 2011. Vibration and noise characteristics of hook type olive harvesters. African Journal of Biotechnology 10: 8074-8081.
  43. Sarri, D., and M. Vieri. 2010. Criteria for introducing mechanical harvesting of oil olives: results of a five-year project in Central Italy. Advances in Horticultural Science 1000-1013.
  44. Sessiz, A., and M. Özcan. 2006. Olive removal with pneumatic branch shaker and abscission chemical. Journal of Food Engineering 76: 148-153.
  45. Sola-Guirado, R., F. Jimenez-Jimenez, G. Blanco-Roldan, S. Castro-Garcia, F. Castillo-Ruiz, and J. A. Gil-Ribes. 2016. Vibration parameters assessment to develop a continuous lateral canopy shaker for mechanical harvesting of traditional olive trees. Spanish Journal of Agricultural Research 14: 0204.
  46. Sola-Guirado, R. R., G. L. Blanco-Roldan, S. Castro-Garcia, F. J. Castillo-Ruiz, and J. A. Gil-Ribes. 2018. Innovative circular path harvester for mechanical harvesting of irregular and large-canopy olive trees. International Journal of Agricultural and Biological Engineering 11: 86-93.
  47. Sola-Guirado, R. R., S. Castro-García, G. L. Blanco-Roldán, F. Jiménez-Jiménez, F. J. Castillo-Ruiz, and J. A. Gil-Ribes. 2014. Traditional olive tree response to oil olive harvesting technologies. Biosystems Engineering 118: 186-193.
  48. Solano, H. 2020. Front olive harvester. https://solano-horizonte.com/tree-harvesters/front-olive-harvester/.
  49. Torregrosa, A., E. Ortí, B. Martín, J. Gil, and C. Ortiz. 2009. Mechanical harvesting of oranges and mandarins in Spain. Biosystems Engineering 104: 18-24.
  50. Torregrosa, A., F. Albert, N. Aleixos, C. Ortiz, and J. Blasco. 2014. Analysis of the detachment of citrus fruits by vibration using artificial vision. Biosystems Engineering 119: 1-12.
  51. Tous, J., A. Romero, and J. Hermoso. 2010. New trends in olive orchard design for continuous mechanical harvesting. Advances in Horticultural Science 43-52.
  52. Tsatsarelis, C. 1987. Vibratory olive harvesting: the response of the fruit-stem system to fruit removing actions. Journal of Agricultural Engineering Research 38: 77-90.
  53. Vieri, M., and D. Sarri. 2010. Criteria for introducing mechanical harvesting of oil olives: results of a five-year project in Central Italy. Advances in Horticultural Science 78-90.
  54. Zhang, Z., P. H. Heinemann, J. Liu, T. A. Baugher, and J. R. Schupp. 2016. The development of mechanical apple harvesting technology: A review. Transactions of the ASABE 59: 1165-1180.
  55. Zhou, J., L. He, Q. Zhang, X. Du, D. Chen, and M. Karkee. 2013. Evaluation of the influence of shaking frequency and duration in mechanical harvesting of sweet cherry. Applied Engineering in Agriculture 29: 607-612.
CAPTCHA Image