با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسنده

گروه مکانیک بیوسیستم، دانشکده مهندسی زراعی و عمران روستایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، اهواز، ایران

چکیده

با وجود کاهش شدید منابع آبی ایران و رشد روزافزون جمعیت، نیاز به تولید غذا و محصولات کشاورزی بیش از گذشته است. در گذشته، اغلب کاشت گیاهان به‌صورت کشت مستقیم بذر صورت می‌پذیرفت و منابع آبی بسیار خصوصا آب‌های زیرزمینی برای کشت مستقیم بذر و جوانه‌زنی گیاه مصرف می‌شد. از جمله روش‌های کاهش مصرف آب، کود و سموم کشت نشایی به‌جای کشت مستقیم بذر است. لذا هدف از پژوهش حاضر مدل‌سازی دینامیکی و ساخت سامانه کاشت بذر در سینی نشاء در نظر گرفته شد. بدین منظور ابتدا یک بازوی کارنده مدل‌سازی و موقعیت کارنده در هر لحظه به‌دست آمد. سپس براساس مدل‌سازی دینامیکی بازو ساخته و عملیات کشت بذر در سینی نشاء صورت پذیرفت. ارزیابی سامانه کاشت دو سطح سرعت پیشروی 5 و 10 سانتی‌متر بر ثانیه برای بذر چغندرقند انجام گرفت که ظرفیـت نامی این بذرکار بین 3579 تا 4613 سلول در ساعت بود. در ضمن شاخص‌های نکاشت و چندگانه کاشت در 3000 سلول نیز به‌ترتیب 0.03 و 8.17 درصد به‌دست آمد. با توجه به دقت کاشت، سرعت عملکرد کارنده و همچنین مصرف اندک انرژی (25.56 وات‌ساعت) این سامانه توانایی جایگزینی بذرکاری دستی در سینی نشاء را دارد.

کلیدواژه‌ها

موضوعات

©2022 The author(s). This article is licensed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Abdolahzare, Z., & Abdanan Mehdizadeh, S. (2018a). Real time laboratory and field monitoring of the effect of the operational parameters on seed falling speed and trajectory of pneumatic planter. Computers and Electronics in Agriculture, 145, 187-198. https://doi.org/10.1016/j.compag.2018.01.001
  2. Abdolahzare, Z., & Abdanan Mehdizadeh, S. (2018b). Nonlinear mathematical modeling of seed spacing uniformity of a pneumatic planter using genetic programming and image processing. Neural Computing and Applications, 29(2), 363-375. https://doi.org/10.1007/s00521-016-2450-1
  3. Anonymous. (2007). Allegro MicroSystems, Fully Integrated, Hall Effect-Based Linear Current Sensor, ACS712 datasheet.
  4. Biancardi, E., McGrath, M., William Panella, L., Lewellen, R.T. & Stevanato, P. (2010). Sugar Beet, Springer Publishers, NY. pp. 173-219. https://doi.org/10.1007/978-0-387-92765-7_6
  5. Cao, J. (2019). Current situation and countermeasures of vegetable industry. Seed Science and Technology, 37(3), 18-21.
  6. Chapra, S. C. (2012). Applied numerical methods with MATLAB for engineers and scientists, McGraw-Hill Publishers, NY., pp. 100-112.
  7. Chen, L., Ma, X., Wang, C., Li, H., Li, Z., Chen, X., & Chen, T. (2020). Design and test of soft-pot-tray automatic embedding system for light-economical pot seedling nursery machine. International Journal of Agricultural and Biological Engineering, 13(1), 91-100. https://doi.org/10.25165/j.ijabe.20201301.4726
  8. Food and Agriculture Organization (FAO). (2018). Retrieved from: http://www.fao.org/faostat/en/#data/QC
  9. Gaikwad, B. B., & Sirohi, N.P.S. (2008). Design of a low-cost pneumatic seeder for nursery plug trays. Biosystems Engineering, 99(3), 322-329. https://doi.org/10.1016/j.biosystemseng.2007.10.017
  10. Gezavati, J., Mohammad Zamani, D., Abbasgolipour, M., Mohammadi Alasti, B., & Ranji, A. (2014). Preliminary design, construction and evaluation of robot of tomato seed planting for the trays of greenhouse. Journal of Agricultural Machinery, 5(2), 242-250. (in Persian). https://doi.org/10.22067/jam.v5i2.28257
  11. González Mendoza, J. M., Palacios Montufar, C., & Flores Campos, J. A. (2013). Analytical synthesis for four-bar mechanisms used in a pseudo-equatorial solar tracker. Ingeniería e Investigación, 33(3), 55-60. https://doi.org/10.15446/ing.investig.v33n3.41045.
  12. Jin, X., Yuan, Y., Ji, J., Zhao, K., Li, M., & Chen, K. (2020). Design and implementation of anti-leakage planting system for transplanting machine based on fuzzy information. Computers and Electronics in Agriculture, 169, 105204. https://doi.org/10.1016/j.compag.2019.105204
  13. Keyvanlo, A. L., & Armin, M. (2017). The effect of seedlings age and date of transfer on quantitative and qualitative characteristics of sugar beet. Iranian Journal of Field Crop Science, 48(1), 291-301. https://doi.org/10.22059/ijfcs.2017.131207.653935
  14. Li-zhang, X. U., & Yao-ming, L. I. (2007). Design and simulation of the forest trees potter. Journal of Machinery Design & Manufacture, 3(2), 24-25.
  15. Nadafzadeh, M., Abdanan Mehdizadeh, S., & Soltanikazemi, M. (2018). Development of computer vision system to predict peroxidase and polyphenol oxidase enzymes to evaluate the process of banana peel browning using genetic programming modeling. Scientia Horticulturae, 231(5), 201-209. https://doi.org/10.1016/j.scienta.2017.12.047
  16. Nasri, R., Kashani, A., Sadeghian Motahar, Y., & Habibi, D. (2011). Quantitative and qualitative characteristics of fall sugar beet in direct cultivation and paper pot transplanting under saline soils of Ahvaz. Agronomy and Plant Breeding Journal, 7(7), 25-40. (In Persian).
  17. Nematinia, E., & Mehdizadeh, S. A. (2018). Assessment of egg freshness by prediction of Haugh unit and albumen pH using an artificial neural network. Journal of Food Measurement and Characterization, 12(3), 1449-1459. https://doi.org/10.1007/s11694-018-9760-1
  18. Rosli, M. F. M., Mahadi, M. R., Misri, M. A., & Wayayok, A. (2016). Initial design of an automated system for paddy seedling placement in a germination tray. Journal Technology, 78(1-2): 119-123. https://doi.org/10.11113/jt.v78.7283
  19. Si, H. P., Sun, L., Jie, C., Wu, J. H., & Lin, K. Y. (2013). Summary of the developing status of greenhouse tray seeder and seed metering device. In Applied Mechanics and Materials, 387(8), 271-279. https://doi.org/10.4028/www.scientific.net/AMM.387.271
  20. Tian, L., Xing, P. G., & Zhang, L. (2017). Design of automatic transplant device for hole disc seedlings based on PLC and photoelectric sensing control. Journal of Agriculture Machinery Research, 39(7), 125-129.
  21. Waldron, K. J., Kinzel, G. L., & Agrawal, S. K. (2016). Kinematics, dynamics, and design of machinery. John Wiley & Sons Publishers. pp. 80-92. https://worldcat.org/en/title/930875622
  22. Wang, J., Fu, Z., Zhang, B., Yang, F., Zhang, L., & Shi, B. (2018). Decomposition of influencing factors and its spatial-temporal characteristics of vegetable production: A case study of China. Information Processing in Agriculture, 5(4), 477-489. https://doi.org/10.1016/j.inpa.2018.06.004
  23. Wang, X., & Feng, Q. C. (2013). Design and Simulation for Key Components of Robotic Flower-Seedling Transplanter.Advanced Materials Research, 680(11), 387-391. https://doi.org/10.4028/www.scientific.net/AMR.680.387
  24. Yun, Zh., Xiong, Zh., Weiwei, Z., & Li, D. (2011). Modern design theory and method of rice transplanter.Transactions of the Chinese Society for Agricultural Machinery, 3(2), 013.
  25. Yang, Q., Huang, G., Shi, X., He, M., Ahmad, I., Zhao, X., & Addy, M. (2020). Design of a control system for a mini-automatic transplanting machine of plug seedling. Computers and Electronics in Agriculture, 169, 105226. https://doi.org/10.1016/j.compag.2020.105226
  26. Yang2018, Q., Xu, L., Shi, X., Ibrar, A., Mao, H., Hu, J., & Han, L. (2018). Design of seedlings separation device with reciprocating movement seedling cups and its controlling system of the full-automatic plug seedling transplanter. Computers and Electronics in Agriculture, 147, 131-145. https://doi.org/10.1016/j.compag.2018.02.004
CAPTCHA Image