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Abstract 

In the quest for enhanced anaerobic digestion (AD) performance and stability, iron-based additives as micro-
nutrients and drinking water treatment sludge (DWTS) emerge as key players. This study investigates the 
kinetics of methane production during AD of dairy manure, incorporating varying concentrations of Fe and 
Fe3O4 (10, 20, and 30 mg L-1) and DWTS (6, 12, and 18 mg L-1). Leveraging an extensive library of non-linear 
regression (NLR) models, 26 candidates were scrutinized and eight emerged as robust predictors for the entire 
methane production process. The Michaelis-Menten model stood out as the superior choice, unraveling the 
kinetics of dairy manure AD with the specified additives. Fascinatingly, the findings revealed that different 
levels of DWTS showcased the highest methane production, while Fe3O420 and Fe3O430 recorded the lowest 
levels. Notably, DWTS6 demonstrated approximately 34% and 42% higher methane production compared to 
Fe20 and Fe3O430, respectively, establishing it as the most effective treatment. Additionally, DWTS12 exhibited 
the highest rate of methane production, reaching an impressive 147.6 cc on the 6th day. Emphasizing the 
practical implications, this research underscores the applicability of the proposed model for analyzing other 
parameters and optimizing AD performance. By delving into the potential of iron-based additives and DWTS, 
this study opens doors to revolutionizing methane production from dairy manure and advancing sustainable 
waste management practices. 

 
Keywords: Anaerobic digestion, Kinetic study, Livestock manure, Modeling, Trace elements  

 

Introduction1 

In recent decades, the world has witnessed 
an unprecedented surge in population and 
industrial development, especially in 
developing countries, leading to a remarkable 
rise in energy demand and waste generation. 
Improper waste management coupled with 
excessive reliance on conventional fossil fuels 
has contributed to environmental issues such 
as global warming and ozone layer depletion. 
Nonetheless, within the vast realm of biomass 
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waste, lies a promising solution– the potential 
to tap into its renewable capacity and harness 
clean energy resources, like biofuels and 
biogas (Lu & Gao, 2021). The production of 
biogas from livestock manure has seen 
widespread adoption across numerous 
countries worldwide. In Iran, the Ministry of 
Agriculture reports a staggering population of 
over 8.4 million cattle and an annual beef 
production rate that has surged by 5%. Despite 
these statistics, except in a few industrial 
farms, a significant portion of the produced 
manure remains untreated and is often left in 
the open or directly applied to the land without 
composting. Nevertheless, Iran has immense 
potential for biogas production, with an 
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estimated yield of 16,146.35 million m3 from 
various waste sources encompassing 
agricultural and animal wastes, and municipal 
and industrial wastewater. This abundance of 
potential biogas could produce substantial 
energy, totaling approximately 323 petajoules 
(1015) and thus positioning Iran as a country 
with vast and valuable biogas resources 
(Zareei, 2018). 

The process of anaerobic digestion (AD) 
stands as a remarkably efficient technique, 
facilitating the transformation of biomass 
waste into highly valuable end products. 
Foremost among these is biogas; 
predominantly composed of methane, carbon 
dioxide, and hydrogen (Wellinger, Murphy, & 
Baxter, 2013). Despite the rapid development 
of AD technology, some of its drawbacks such 
as low biodegradation efficiency, poor 
stability, and environmental sensitivity, have 
hindered its commercial application. To 
address these challenges, approaches such as 
co-digestion, pretreatment, and new reactor 
designs, as well as the use of additives have 
been proposed. The additives stimulate 
bacterial growth and reduce inhibitory effects 
which can help control microbial generation 
time, degradation rate, and gas production 
(Choong, Norli, Abdullah, & Yhaya, 2016; 
Gkotsis, Kougias, Mitrakas, & Zouboulis, 
2023). Studies conducted by Al Seadi et al. 
(2008) and Cheng et al. (2020) emphasize the 
significance of incorporating trace elements or 
micro-nutrients like iron (Fe), cobalt (Co), or 
nickel (Ni) into the anaerobic digestion 
process. These additives play a crucial role in 
facilitating the digestion process. 

Dudlet's research in 2019 reveals that iron 
has immense potential as a cost-effective 
enhancer in AD methane production. 
Furthermore, industrial enterprises generate 
around 18,895 thousand tonnes of iron waste 
every year, but only around 8,000 thousand 
tonnes get recycled and the remaining iron 
scraps are discarded into landfills (Dudley, 
2019). Iron, being an essential element in the 
methanogenesis process, assumes a pivotal 
role in elevating biogas yield. Its unique 
capacity to ionize Fe2+ and Fe3+ ions enables 

it to serve as both an electron donor and 
acceptor. Chen, Konishi, & Nomura (2018) 
report that iron-based additives offer numerous 
advantages, including nutrient 
supplementation, improved methane yield, 
enhanced substrate digestibility, and effective 
control of H2S toxicity, among other benefits. 
A range of iron-based additives have common 
usage including waste iron scraps (Wiss), iron 
nanoparticles (Fe NPs), iron chlorides (FeCl2, 
FeCl3), zero valent scrap iron (ZVSI), iron 
oxides (Fe2O3, Fe3O4), iron powder (Fe 
powder), zero-valent iron (ZVI), iron sulfate 
(FeSO4), and nano zero-valent iron (NZVI). 
Notably, waste iron scraps, iron oxides 
(Fe3O4), and iron powder emerge as prevalent 
and cost-effective additives due to the 
abundance of their sources and straightforward 
preparation methods. Additionally, these 
additives are commercially produced and 
readily available (Muddasar, 2022). Numerous 
studies have demonstrated the potential of 
these three types of iron-based additives to 
boost biogas yield and enhance process 
stability when utilized with diverse substrates. 
For instance, Cheng et al. (2020) observed a 
remarkable 64.4% increase in methane yield 
when rusted iron shavings were added to a 
mixture of food waste and municipal sludge. 
Furthermore, the addition of Fe powder led to 
a 14.46% rise in methane yield, while clean Fe 
scrap further elevated methane yield by 
21.28% (Zhang, Feng, Yu, & Quan, 2014). 
Hao, Wei, Van, & Cao (2017) and Kong et al. 
(2018) have reported significant findings on 
the impact of adding Fe to anaerobic digesters 
handling the organic fraction of municipal 
solid waste (OFMSW) and sludge. The 
inclusion of Fe led to about 40% increase in 
CH4 yield for OFMSW digestion and a 20% 
increase in sludge digestion. According to 
Abdelsalam et al. (2016), incorporating 20 
mg/L Fe nanoparticles resulted in a 1.7-fold 
increase in biogas yield. Similarly, Ali, Mahar, 
Soomro, & Sherazi (2017) found that, when 
utilizing municipal solid waste (MSW) as a 
substrate for the AD process, the addition of 
75 mg L-1 concentration of Fe3O4 
nanoparticles can lead to 72.09% enhancement 
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in methane generation. In another study by 
Noonari, Mahar, Sahito, & Brohi (2019), it 
was demonstrated that the introduction of 0.81 
mg of Fe3O4 nanoparticles as iron-based 
additives led to a 39.1% increase in methane 
generation using canola straw and buffalo 
dung. Additionally, Zhao, Li, Quan, & Zhang 
(2017) reported that Fe3O4 additive in the AD 
process had a significant impact on biogas 
yield, with Fe3O4 nanoparticles (Fe3O4 NPs), 
Iron powder, and Iron nanoparticles following 
suit. These additives also proved beneficial in 
enhancing substrate digestibility by 
decomposing lignocellulosic biomass into 
simpler structures. 

While trace elements have proven to be 
beneficial, their widespread implementation 
remains limited primarily due to their high 
cost. To address this issue, and render their 
utilization economically feasible, more 
affordable sources of micro-nutrients could be 
explored (Huiliñir, Montalvo & Guerrero, 
2015). Several studies (Huiliñir et al., 2015; 
Huiliñir, Pinto-Villegas, Castillo, Montalvo, & 
Guerrero, 2017; Ebrahimi-Nik, Heidari, 
Azghandi, Mohammadi, & Younesi, 2018) 
have highlighted the successful utilization of 
fly ash and drinking water treatment sludge 
(DWTS). DWTS is composed of alkaline, 
trace, heavy metals, and clay, arising from the 
treatment of surface water for drinking 
purposes. Despite its potential, DWTS is 
currently disposed of as waste and even 
requires appropriate disposal methods 
(Ahmad, Ahmad, & Alam, 2016). In their 
research, Torres-Lozada et al. delved into the 
impact of adding drinking water sludge to 
domestic wastewater sludge, aiming to 
enhance methane production during AD. Their 
findings revealed that the most favorable 
mixtures for anaerobic co-digestion should 
consist of under 20% DWTS (Torres-Lozada, 
Diaz-Granados & Parra-Orobio, 2015). 
Ebrahimi-Nik et al. (2018) explored the 
impact of adding DWTS to a mixture of biogas 
and methane production from food waste. 
Their findings demonstrated that DWTS 
additive can lead to a substantial improvement 
in both biogas and methane yield, up to 65%. 

While an optimal dosage of trace elements 
has been shown to positively impact AD 
performance, it is crucial to bear in mind that 
an excessive amount might have adverse 
effects on the process (Demirel & Scherer, 
2011; Schmidt, Nelles, Scholwin & Proter, 
2014). Therefore, the application of 
mathematical modeling in AD proves to be a 
rapid and cost-effective approach for 
predicting and optimizing fuel processing 
engineering and waste industry design 
(Andriamanohiarisoamanana, Ihara, Yoshida 
& Umetsu, 2020). In this context, AD 
processes exhibit compatibility with non-linear 
models, as the microorganisms’ growth and 
subsequent production kinetics are frequently 
non-linear (Khamis, 2005). Numerous non-
linear regressions (NLRs) were derived from 
AD experiments, emphasizing the significance 
of making appropriate selections from an 
extensive library of functions (Archontoulis & 
Miguez, 2015). Moreover, it is crucial to 
ensure that the samples are not only 
adequately large but also accurately 
representative to achieve the desired outcomes 
with the regression model. However, due to 
the method's high sensitivity, errors may arise 
(Wang, Tang & Tan, 2011; Wang et al., 2021). 

Despite extensive research in the field, 
there are currently no published studies 
exploring the potential of enhancing biogas 
yield by incorporating DWTS into the 
anaerobic digestion process of dairy manure 
and comparing it with iron-based additives. 
Thus, the present project seeks to fill this 
knowledge gap and aims to model the impact 
of iron-based additives, namely Fe, Fe3O4, and 
DWTS, as trace elements and additives for 
biogas production during the anaerobic 
digestion process of dairy manure. 

 

Materials and Methods 

Materials 
The primary feedstock utilized in this study 

was dairy manure, sourced from the livestock 
farm of Ferdowsi University of Mashhad, Iran. 
Fe3O4 and iron shavings served as the trace 
elements in this research. The iron shavings, 
smaller than 1 mm, were procured from the 
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mechanics laboratory of Ferdowsi University 
of Mashhad, Iran. To remove oil and 
impurities, the shavings were immersed in a 14 
M sodium hydroxide solution for 24 hours, 
followed by a day of air drying at room 
temperature. Additionally, drinking water 
treatment sludge (DWTS) was obtained from a 
drinking water treatment plant in Mashhad, 
Iran, and used as an additive. DWTS, when 
rich in Fe2O3, plays a crucial role in municipal 
water purification. The composition of DWTS 
used in this research closely resembles the one 
described in our previous study (Ebrahimi-Nik 
et al., 2018). The key components of DWTS in 
descending order include Fe2O3, SiO2, CaO, 
and Al2O3. The abundance of Fe2O3, as 
revealed by X-ray fluorescence (XRF) 
analysis, was a result of adding iron chloride 
as a flocculent during the drinking water 
treatment process. SiO2 stemmed from the 
inclusion of suspended solids and various 
types of clay. Moreover, small quantities of 
other oxides like MgO, P2O5, MnO, TiO2, P2O, 
and N2O were identified. DWTS contained 
trace elements such as Ni, Cr, Co, Zn, Cu, Ba, 
Sr, Cl, and Zr, detected in parts per million 
(ppm) levels as well. Before utilization, the 
sludge underwent air drying and was then 
ground and passed through specialized sieves 
to achieve a maximum particle size of 0.63 
mm. Additionally, following the methodology 
outlined in recent studies, microcrystalline 
cellulose (MERCK-Germany) was prepared as 
a validation material for inspecting the 
inoculum's quality (Holliger et al., 2016). To 
carry out the experiments, a complete stirred 
tank reactor (CSTR) was employed at 
Ferdowsi University of Mashhad, Iran, 
maintaining a stable state and receiving daily 
feedings of food waste, primarily consisting of 
rice. 

Data collection and laboratory 

experimentation 
Conducting the AD process under 

mesophilic conditions at 37°C, we performed 

three independent experimental replicates 
following the procedure outlined by Holliger 
et al. (2016). The essential inoculum for the 
AD tests was procured from an active digester 
within Ferdowsi University of Mashhad's 
biogas laboratory, which maintained a steady-
state operation. To regulate its biogas 
production rate and ensure suitability for the 
AD experiments, the collected inoculum 
underwent 20 days of incubation at 37°C in a 
warm-water bath (Rosato, 2017). 

The experiments were carried out using 500 
mL bottles, with a working volume of 400 mL 
and each bottle's gas-tightness was ensured. To 
facilitate the gas collection, each bottle was 
connected to a 2 L gas collection bag via the 
pneumatic mediator (PUSH-FIT) attached to 
its lid through a plastic tube. Both the inlet and 
outlet were present on the gas bags, with a 
heparin cap connected to the outlet, enabling 
methane measurement using a syringe. Before 
sealing the digesters, carbon dioxide was 
purged over the solution for 30 seconds, 
establishing anaerobic conditions. Fig. 1 
illustrates the experimental setup utilized in 
this study. The generated biogas was passed 
through a 7 M sodium hydroxide solution, 
effectively eliminating impurities and 
converting them into pure methane (Stoddard, 
2010). To maintain a constant temperature of 
37°C, a water bath (also known as a bain-
marie) was utilized. Additionally, Eq. 1 was 
employed to determine the suitable materials 
and their ratios for each bottle. 

𝐼𝑆𝑅 =
𝑉𝑖𝑛. 𝑉𝑆𝑖𝑛

𝑉𝑠𝑢𝑏 . 𝑉𝑆𝑠𝑢𝑏
 (1) 

Where Vin represents the volume of 
inoculum, VSin refers to the VS of inoculum 
based on wet weight, Vsub denotes the volume 
of substrate, and VSsub represents the VS of the 
substrate based on wet weight. The ratio of 
inoculum to substrate (ISR) was adjusted to 
5%. 

 



19     Journal of Agricultural Machinery Vol. 14, No. 1, Spring 2024 

 
 

Fig.1. Digesters and the Experimental setup (a) photo and (b) schematic illustration 
 

 
Using a scale with a precision of 0.001 

grams, the quantities of each additive were 
measured. Fe and Fe3O4 were added at three 
levels: 10, 20, and 30 mg L-1. DWTS was 
utilized at three concentrations of 6, 12, and 18 
mg L-1. Table 1 illustrates the experimental 
treatments and their corresponding symbols, as 
used in the subsequent section. In this 
experiment, cellulose was employed as a 
positive control and combined with the 
appropriate amount of inoculum to achieve an 
ISR ratio of 2, with three replicates. Therefore, 
three bottles containing only inoculum were 
utilized as control treatments in this study. 
Consequently, the difference between the 
methane production of the treated and the 
control samples ascertains the effect of each 
treatment on methane production. 

Daily measurements of biogas and methane 
production resulting from the treatments were 

carried out using a 60cc syringe (Raposo, De 
la Rubia, Fernández-Cegrí, & Borja, 2012). 
The anaerobic digestion process spanned 43 
days and was concluded when the rate of 
methane production dropped below 1% of the 
total cumulative methane production during 
three consecutive days (Holliger et al., 2016). 
Throughout this period, the ambient 
temperature was recorded every day using a 
mercury thermometer, and the atmospheric 
pressure data was sourced from the Mashhad 
synoptic station. These two parameters were 
crucial for converting the measured 
biomethane volume into its corresponding 
standard volume (at standard conditions of 
temperature T=273.15 K and pressure 
P=101.325 kPa (Ebrahimzadeh, Ebrahimi-Nik, 
Rohani & Tedesco, 2021). 

 

Table 1- Experimental treatment information 

Additives Treatment Unit (mg L-1) Treatment symbol 

DWTS 
DWTS 6 6 T1 
DWTS 12 12 T2 
DWTS 18 18 T3 

Fe 
Fe 10 10 T4 
Fe 20 20 T5 
Fe 30 30 T6 

Fe3O4 

Fe3O4 10 10 T7 
Fe3O4 20 20 T8 
Fe3O4 30 30 T9 

 

Measurement of total solids (TS) and 

volatile solids (VS) 

Throughout and after the experiment, 
analyses were conducted following established 

(b) 
(a) 
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standards. Specifically, the substrates' total 
solids (TS) and volatile solids (VS) content 
were determined before and after the 
experiments as per the American Standard for 
Public Health (APHA, 2005). To achieve this, 
a 50-gram sample comprising various 
materials used in the experiment (including 
cellulose, inoculum, and cow manure) was 
placed in an oven and heated at 105 degrees 
Celsius for a total of 24 hours. The samples 
were weighed initially and every hour while in 
the oven. This process was repeated until the 
weight of the samples dropped less than 4% in 
an hour, indicating they had reached a state of 
constant weight. At this point, the total solids 
(TS) value was calculated using Eq. 2. 

(2) 𝑇𝑆 =
(𝐴 − 𝐵) × 100

(𝐶 − 𝐵)
 

The percentage of total solids (TS) is 
represented by the variables A, B, and C 
corresponding to the weight of the dried 
sample plus petri dish, the petri dish, and the 
wet sample (substrate) plus petri dish, 
respectively. To ensure the accuracy of our 
results, each of these steps was triplicated. The 
dried materials from the previous step were 
utilized to calculate the content of volatile 
solids (VS). For this purpose, a 2-gram sample 
comprising the mentioned materials was 
placed inside an oven at a temperature of 550 
degrees Celsius for one hour. Then, it was 
removed and weighed. This process was 
repeated after another 30 minutes in the oven. 
The experiment continued until the samples 
reached a steady state, with a weight change of 
less than 4% (APHA, 2005) and then VS was 
calculated using Eq. 3. 

(3) 𝑉𝑆 =
(𝐴 − 𝐷)

(𝐴 − 𝐵)
× 100 

Where VS represents the percentage of total 
solids, while A, B, and D correspond to the 
weight of the petri dish plus container, the 
container alone, and the sample plus container 
after being heated in an oven, respectively. 

 

Nonlinear regression analysis of biogas 

production kinetics 
To examine the production of biogas 

through the anaerobic digestion of dairy 

manure and determine the relevant kinetic 
parameters, nonlinear regression (NLR) 
models were utilized. Nonlinear regression 
proves to be a robust instrument for estimating 
the parameters, including the degradation rate, 
the gas volume generated per nutrient 
degradation, and the fermentation process's lag 
phase of anaerobic digestion (Ebrahimzadeh, 
Ebrahimi-Nik, Rohani, & Tedesco, 2022). 
When dealing with unclear or time-dependent 
associations between the variables in intricate 
biological systems such as anaerobic digesters, 
NLR models offer notable advantages. The 
estimation process in these models 
incorporates iterative techniques, such as the 
Levenberg-Marquardt algorithm, which 
adjusts the model's parameters iteratively to 
achieve an optimal fit to the data by 
minimizing the discrepancy between the 
predicted and actual values. By employing Eq. 
4 within the NLR model, the cumulative 
biogas production (y) as a function of 
digestion time (t) in the biogas reactor can be 
effectively assessed. This equation takes into 
account a random error term (ε), which 
captures any unexplained variation in the 
relationship between y and t. 
𝑦 = 𝑓(𝑡, 𝛽) + 𝜀 (4) 

To determine the β coefficients that most 
accurately depict the data, the objective of 
NLR involves the process of curve fitting. The 
estimation of these coefficients is usually 
achieved by minimizing the sum of squared 
errors (SSE) between the predicted and 
observed values of the dependent variable. To 
evaluate the NLR model and its coefficients' 
importance, researchers often employ the 
analysis of variance (ANOVA). There are 
multiple methods of determining NLR model 
coefficients, and a popular approach is to 
utilize the Levenberg-Marquardt algorithm, 
which incorporates a regularization term to 
prevent overfitting. For our study, the model 
coefficients were acquired by using the 
MATLAB function fitnlm, which is a built-in 
function capable of fitting multitudes of NLR 
models to data. A comprehensive summary of 
the NLRs analyzed in our study is presented in 
Table 2. It illustrates the ability to fit an 
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extensive range of data patterns, including 
exponential, logarithmic, polynomial, 
sinusoidal, generalized Mitscherlich, Michael 

Menten, and power-law functions. NLRs offer 
a versatile approach to fitting various data 
patterns. 

 
Table 2- Nonlinear regression models for analyzing biogas production from dairy manure 

Name Equation Symbol 

Logistic-Exponential without LAG f(t) = a
1 − exp(−bt)

1 + exp (ln (
1

d
) − bt)

 M1 

Logistic-Exponential with LAG f(t) = a
1 − exp(−b(t − c))

1 + exp (ln (
1

d
) − b(t − c))

 M2 

Exponential without LAG f(t) = a(1 − exp(−bt)) M3 

Exponential with LAG f(t) = a(1 − exp(−b(t − c)))
 
 M4 

Gompertz  f(t) = a exp (−exp(1 − b(t − c))) M5 

Logistic f(t) = a
1

1 + exp(2 + b(c − t))
 M6 

Generalization of the Mitscherlich f(t) = a (1 − exp (−b(t − c) − d(√t − √c))) M7 

Michaelis-Menten (MM) f(t) = a
tc

tc + bc M8 

Modified MM f(t) = a
tc

tc + b
 M9 

Two-pool exponential f(t) = ∑ ai(1 − exp(−bi(t − c)))

2

i=1

 M10 

Two-pool logistic f(t) = ∑ ai

1

(1 + exp(2 − 4bi(t − c)))

2

i=1

 M11 

Modified Gompertz  f(t) = a exp (− exp (2.71
b

a
(c − t) + 1)) M12 

Logistic f(t) = a
1

1 + bexp(−ct)
 M13 

Gompertz f(t) = a exp (−bexp(−ct)) M14 

Richard f(t) = a
1

(1 + b × exp(−ct))
1

d⁄
 M15 

Double-Sigmoid f(t) = a
1

1 + exp(−(b + ct + dt2 + et3))
 M16 

Monomolecular- logistic f(t) = a(1 − exp(−bt)) +
c

1 + exp(−d(t − e))
 M17 

Chapman-Richard f(t) = a(1 − b × exp(−ct))(
1

1−d
)
 M18 

Exponential-linear f(t) =
a

b
× ln(1 + exp(b(t − ct))) M19 

LinBiExp f(t) = a × ln (exp (
b(t − c)

d
)) + exp (

e(t − f)

g
) + f M20 

Cone f(t) = a (
1

1 + (bt)−c
) M21 

Contois f(t) = a (1 −
b

ct + b − 1
) M22 

Fitzhugh f(t) = a(1 − exp(−bt)c) M23 

France f(t) =
a(1 − exp−bt)

(1 + c exp−bt)
 M24 

Monod without LAG f(t) = a
bt

bt + 1
 M25 

Monod with LAG f(t) = a
b(t − c)

b(t − c) + 1
 M26 
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Criteria for evaluating the fit of nonlinear 

regression models  
To assess the goodness-of-fit of nonlinear 

regression models, we employed Eq. 5 
representing the coefficient of determination 
(R2), Eq. 6 for calculating root mean square 
error (RMSE), and the minimum value 
predicted by the model (MP). The process of 
identifying the most fitting models was 
facilitated through the application of these 
criteria, and we were able to identify the 
models that most precisely depict the 
fundamental biogas production kinetics using 
them. 

 

𝑅2 = 1 −
∑ (𝐵𝑎𝑖 − �̂�𝑝𝑖)

2𝑁
1

∑ (𝐵𝑎𝑖 − 𝐵𝑎
̅̅ ̅)2𝑁

1

 (5) 

𝑅𝑀𝑆𝐸 =  √∑
|𝐵𝑎𝑖 − �̂�𝑝𝑖|

2

𝑁

𝑛

𝑖=1

 (6) 

Where Ba and Bp denote the experimental 
and predicted values, respectively. The 𝐵𝑎

̅̅ ̅  
represents the average value of the 
experimental values, and N denotes the sample 
size. When selecting the best model, a good fit 
with experimental data is indicated by a low 
RMSE value and a high R2 value. Because 
biogas production originates from zero at the 
start of the digestion process, the fitted model 
must also pass through the origin of 
coordinates. The model's physical 
interpretability and validity for predicting 
future biogas yields are ensured with this 
crucial requirement. In other words, the 
requirement of passing through the origin of 
the coordinates is crucial to guarantee the 
model's physical interpretability and validity 
for future biogas yield predictions. 

 

Results and Discussions 
This section focuses on evaluating the 

performance of non-linear regression models 
applied to the cumulative methane data 
gathered throughout the anaerobic digestion 
process. Furthermore, a comparison is made 
between the gas production rates and the 
average cumulative methane produced using 
the various treatments. 

 

Finding the best-fit non-linear regression 

model  
Accurate analysis of the cumulative 

methane data obtained during the anaerobic 
digestion process relies on selecting the most 
appropriate non-linear regression model. One 
crucial criterion for this selection is the 
model's ability to cross the origin of the 
coordinates, ensuring that it estimates a value 
of zero at the beginning of the digestion 
process. This property ensures that the model 
is consistent with the actual process. In Table 
3, we present the predicted cumulative 
methane production at the start of the 
anaerobic digestion process for 26 non-linear 
regression models. Through our evaluation, 
out of the 26 models, we identified eight valid 
models that met this property. While some 
other models, like M22, M13, and M2, could 
predict zero values for specific treatments 
only; making them unsuitable for our analysis. 
Consequently, we excluded these models from 
further consideration and focused on the ones 
predicting a zero value for all treatments. 
Thus, we narrowed down our selection to these 
eight models for further analysis. In the 
subsequent sections, we will discuss the 
performance of these eight models and 
compare their results to identify the best-fit 
model for analyzing the cumulative methane 
data. 
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Table 3- Predicted minimum amounts of methane produced during the digestion time for the 

studied treatments, utilizing 26 non-linear regression models 
Model T1 T2 T3 T4 T5 T6 T7 T8 T9 

M1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

M2 -190 -203 -162 -16 -44 0 0.00 0.00 0.00 

M3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

M4 -155 -222 -132 -14 -197 -75 -251 -132 -40 

M5 100 46 65 31 33 22 0.00 0.00 0.00 

M6 263 165 202 47 109 46 14 3 21 

M7 -155 -226 -171 -21 -194 -80 -154 -96 -41 

M8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

M9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

M10 -97 -90 -73 -65 -70 -69 -44 -48 -57 

M11 97 0 91 66 6 6 54 45 77 

M12 100 46 65 31 33 22 0.00 0.00 0.00 

M13 1 1 1 0 1 3 0.00 0.00 0.00 

M14 100 46 65 34 33 22 0.00 14 18 

M15 89 49 82 40 33 21 1 0.00 28.48 

M16 1124 1055 886 413 712 582 633 432 352 

M17 1.27 0.00 0.00 1.69 0.00 3.57 2 0.00 0.00 

M18 58 63 59 3 60 68 15 6 9 

M19 1039 1022 845 29 747 728 7 5 32 

M20 347 258 347 50 330 318 38 58 106 

M21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

M22 0 0 0 0 0 0 0 0 -150 

M23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

M24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

M25 924 951 803 286 686 645 471 322 284 

M26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

In Table 4, the results of RMSE and R2 for 
each of the nine treatments are presented. 
Based on the R2 criterion, we observed that 
four models (M9, M21, M24, and M26) lacked 
sufficient predictive ability to estimate 
cumulative methane production during the 
digestion process, as their R2 values were the 
lowest. Among the remaining four models, the 
Michaelis-Menten model (M8) demonstrated 
superior predictive ability for all treatments. 
Although the M1 model also exhibited good 
predictive ability, we excluded it from the 
selection list due to its complexity in 
comparison to the M8 model. Consequently, 
we proceeded with the Michaelis-Menten non-
linear regression model (M8) for further 
analyses, which will be presented in the 
following sections. 

Iron-based additives exhibited diverse 
behaviors during the biodegradation process of 
dairy manure. Although the First-order and 
Gompertz models are commonly used for 
monitoring biodegradation in anaerobic 

digestion (AD) processes, they were not found 
to be adequately suitable for modeling the AD 
of dairy manure with iron-based additives. The 
biodegradation of starch-based bioplastic 
under anaerobic conditions was evaluated to 
determine an appropriate kinetic model. The 
analysis involved examining 26 nonlinear 
regression models, and it was found that the 
modified Michaelis-Menten (MM) model was 
the best-fitted model for the biodegradation 
process (Ebrahimzadeh et al., 2022). The 
innovative multi-Gompertz model has been 
proposed as the most suitable model for biogas 
production from residual marine macroalgae 
biomass (Pardilhó, Pires, Boaventura, Almeida 
& Dias, 2022). Additionally, other models are 
employed for more specific conditions and 
additives, such as higher solids contents (e.g., 
Chen and Hashimoto model), or specific 
microorganisms (e.g., cone model) (Karki et 
al., 2022; Lima, Adarme, Baˆeta, Gurgel, & de 
Aquino, 2018; Masih-Das & Tao, 2018). 
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Table 4- Assessment of eight selected non-linear regression models using RMSE and R2 criteria 

  
T1 T2 T3 T4 T5 T6 T7 T8 T9 

M1  
RMSE 118 137 139 189 139 142 92 87 79 

R2 0.97 0.96 0.95 0.75 0.92 0.87 0.97 0.94 0.92 

M3  
RMSE 118 149 140 190 150 145 534 138 108 

R2 0.97 0.95 0.95 0.74 0.90 0.86 0.00 0.85 0.85 

M8  
RMSE 90 118 130 187 134 138 91 85 81 

R2 0.98 0.97 0.95 0.75 0.92 0.87 0.97 0.94 0.92 

M9  
RMSE 674 963 130 471 746 574 709 450 325 

R2 0.11 0.00 0.95 0.00 0.00 0.00 0.00 0.00 0.00 

M13  
RMSE 288 254 257 247 202 163 119 102 88 

R2 0.84 0.86 0.82 0.57 0.82 0.82 0.95 0.92 0.90 

M21  
RMSE 1318 1256 1063 367 805 630 625 319 191 

R2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 0.53 

M24  
RMSE 1321 1259 1066 375 807 633 634 341 214 

R2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.41 

M26  
RMSE 553 528 454 321 362 277 480 320 244 

R2 0.40 0.39 0.43 0.27 0.44 0.49 0.13 0.20 0.24 

 

Table 5 presents the coefficients of the 
Michaelis-Menten nonlinear regression model, 
along with their standard deviation, p-values, 
coefficient of determination (R2), and the 
adjusted coefficient of determination for each 
of the studied treatments. The p-value is equal 
to zero in all cases, indicating that the 
coefficients of the models are statistically 
significant at a significance level of one 

percent. The small standard deviation values 
of the coefficients, relative to the coefficient 
values, provide further evidence that the 
models' estimations can be trusted. Except for 
the T4 treatment, all other treatments have an 
R2 value equal to or greater than 0.93, 
confirming the prediction reliability of the 
models. Hence, the results will be interpreted 
based on the estimations of the models. 

 
Table 5- Coefficients, significance results, and coefficient of determination values for the 

Michaelis-Menten model 
  

T1 T2 T3 T4 T5 T6 T7 T8 T9 

Coefficients 

a 2566.0 2280.0 2158.5 1275.3 1562.9 1273.9 1325.3 893.0 736.1 

b 1.64 1.95 1.59 1.56 1.98 2.37 5.06 5.77 5.35 

c 11.50 9.83 10.76 17.46 8.41 6.50 13.31 12.90 12.62 

Std 

 

a 50.95 38.94 71.30 208.83 34.37 24.16 12.70 9.94 12.25 

b 0.07 0.10 0.12 0.35 0.16 0.26 0.29 0.44 0.59 

c 0.37 0.27 0.60 4.39 0.34 0.30 0.17 0.19 0.29 

p-value 

 

 

a 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

b 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

c 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

𝑅2 
𝑅2 0.99 0.98 0.97 0.80 0.96 0.93 0.98 0.97 0.94 

𝑅𝐴𝑑𝑗.
2  0.99 0.98 0.97 0.80 0.95 0.92 0.98 0.97 0.94 

 

For a deeper understanding of the impact of 
coefficients in the Michaelis-Menten nonlinear 
regression model, a sensitivity analysis was 

conducted. Insights were gained by plotting 
the methane production trend during the 
digestion process and altering a single 
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coefficient at a time; the others were kept 
constant at their average values. The results of 
this analysis are presented in Fig. 2. The 
regression coefficient 'a' has a direct influence 
on the maximum methane production during 
the digestion process. Higher values of 'a' 
increased methane production, while lower 
values resulted in lower production. This 
coefficient represents the horizontal asymptote 
of the methane production curve. On the other 
hand, coefficient 'b' governs the slope of the 
methane production curve, impacting the time 
it takes to reach maximum methane 

production. A higher value of 'b' leads to a 
steeper slope and the methane production 
reaches its maximum more quickly. 
Conversely, an increase in coefficient 'c' slows 
down the rate of methane production, and 
requires a longer time to reach the maximum 
production level. Considering the behavior of 
these three regression coefficients, it can be 
concluded that the highest amount of methane 
production occurs when coefficients 'a' and 'b' 
are high, and coefficient 'c' is low. This 
combination results in faster methane 
production over a shorter period. 

 

  

 

Fig.2. Sensitivity analysis investigating the effect of the Michaelis-Menten model 

coefficients a, b, and c on methane production 
 
Fig. 3 presents the fitting outcomes of the 

Michaelis-Menten nonlinear regression model 
for all of the investigated treatments, along 
with the upper and lower limits of the fitted 
curve. The results indicate variations in the 
dispersion of experimental data among the 
different treatments, likely due to differences 

in experimental conditions. Nevertheless, 
considering the proximity of the upper and 
lower limits of the fitted curve and the model 
evaluation, it can be inferred that the fitted 
results effectively represent the variability of 
methane production within the studied 
treatments. 
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Fig.3. Curve fitting of the Michaelis-Menten nonlinear regression model for each of the 

studied treatments, showing the dispersion of experimental data and the upper (UB) and 

lower (LB) bounds of the fit 
 
The final amount of methane production 

and its changes during the process were 
compared using non-linear regression models, 
as depicted in Fig. 4. Among the studied 
treatments, DWTS6, DWTS12, and DWTS18 
showed the highest levels of methane 
production, while Fe3O420 and Fe3O430 
resulted in the lowest levels. The maximum 
methane production for DWTS6 was 
approximately 34% and 42% higher than that 
of Fe20 and Fe3O430, respectively, which were 
the best-performing levels among the Fe 
additives’ treatments. This indicates that 
DWTS acts as a mixture of different trace 
elements with synergistic and antagonistic 
effects, resulting in an enhancement of 
methane production from dairy manure. 
Previous research by Ebrahimi-Nik et al. 
(2018) demonstrated that the addition of 6 
mg/kg DWTS to the anaerobic digestion of 
food waste, compared to the control digester, 
resulted in a significant increase of 65% and 
58% in biogas and methane yields, 
respectively. In Fig. 4 it is evident that until 
the 10th day of the digestion process, Fe3O410 
produced less methane than all levels of Fe. 
However, after the twelfth day, the methane 
production rapidly exceeded all levels of Fe, 
indicating a unique pattern of methane 
generation for Fe3O410 compared to other 
levels of Fe. The addition of Fe3O4 to the 
anaerobic digestion (AD) process has been 
reported to have a significant positive effect on 

biogas yield. These additives also contribute to 
improving substrate digestibility by facilitating 
the decomposition of lignocellulosic biomass 
into simpler structures (Zhao et al., 2017). Ali, 
Mahar, Soomro, & Sherazi (2017) observed a 
remarkable 72.1% increase in methane content 
when using municipal solid waste (MSW) as a 
substrate for the AD process with the addition 
of Fe3O4 nanoparticles. In another study, 
Abdelsalam et al. (2017) investigated the 
impact of iron nanoparticles and iron oxide 
nanoparticles on biogas and methane 
production using cattle dung slurry and found 
that Fe3O4 NPs with a concentration of 20 
mg/L led to a substantial 65.6% increase in 
biogas production. Fe3O4 NPs additives have 
also been associated with the highest biogas 
yield reported from an AD process (Casals et 
al., 2014). These findings highlight the 
potential and significance of Fe3O4-based 
additives in enhancing biogas production in 
anaerobic digestion processes. Regarding the 
slope of methane production, it is observed 
that the top two treatments, DWTS6 and 
DWTS12, have the same slope until day 20. 
However, after day 20, the methane production 
trend for DWTS6 rises above that of 
DWTS12. Generally, the slope of methane 
production varies among different treatments, 
with some showing an uphill start, which may 
also have a significant impact on their overall 
methane production. 
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Fig.4. Methane production during the anaerobic digestion process using non-linear 

regression models for each of the treatments 

  

 

Fig.5. Changes in the production rate of methane during the anaerobic digestion process 
using a non-linear regression model for each of the three additives 

 
Fig. 5 displays the methane production rate 

from the treatments throughout 40 days. 
Sigmoid gas production curves can be 
categorized into three stages: the initial stage 
with slow or no gas production, the rapid gas 
production stage (exponential stage), and the 

final stage where gas production slows down 
and eventually reaches zero (asymptotic 
stage). A comparison of the three types of 
treatments reveals that only the treatments 
with different levels of Fe3O4 experienced an 
initial stage. Consequently, these treatments 
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reached their maximum production rate after 
day ten, while other additives (DWTS and Fe) 
achieved their maximum rates before the 10th 
day. It was observed that a higher level of 
Fe3O4 corresponds to a lower methane 
production rate in all three stages. However, 
Fe20 and Fe30 exhibited increased methane 
rates in the first two stages. It is noteworthy 
that the lower level of Fe (Fe20) resulted in a 
higher methane production rate than Fe30 at 
the end of the process, particularly after the 
18th day and during the third stage. When 
comparing different levels of DWTS, it was 
evident that although these treatments had 
similar rates during the first and final days of 
the process, DWTS12 exhibited the highest 
methane production rate during the rapid gas 
production stage. Specifically, the maximum 
methane production rate of DWTS12 in the 
second stage was approximately 5% and 22% 
higher than DWTS6 and DWTS18, 
respectively. 

Abdelsalam et al. (2017) conducted a study 
on the impact of magnetic iron oxide 
nanoparticles on methane production from 
anaerobic digestion of manure. Their findings 
revealed that utilizing 20 mg L-1 of Fe3O4 
resulted in the highest methane production 

rate, surpassing the rates observed with 5 mg 
L-1 and 10 mg L-1 of Fe3O4. The maximum 
methane production rate was achieved before 
the 5th day and reached approximately 110 cc 
for the AD process of food waste when 6 mg 
L-1 of DWTS was used. This result aligns 
closely with the findings obtained for the same 
treatment in one of our other studies 
(Ebrahimzadeh et al., 2022). 

Using the results obtained from the 
modeling analysis, we computed the quantity 
of methane production for each of the nine 
treatments at various points during the 
anaerobic digestion process. We calculated 
methane production when it reached 25%, 
50%, 75%, and 90% of the final amount 
achieved at the end of the process. The 
computed values for T25, T50, T75, and T90 
of each treatment are presented in Table 6. By 
examining these values for the treatments, we 
can determine the speed at which each 
treatment achieves its maximum methane 
production. Opting for a treatment that reaches 
its maximum methane production earlier with 
a higher percentage would be preferable, as it 
indicates a more efficient and effective 
process. 

 

Table 6- Calculated methane production values for T25, T50, T75, and T90 for each treatment 
Additive Treatment T25 (day) T50 (day) T75 (day) T90 (day) 

DWTS 

DWTS 6 5.65 11.29 21.77 38.89 

DWTS 12 5.64 9.65 16.32 26.93 

DWTS 18 5.28 9.40 16.49 28.03 

Fe 

Fe 10 8.48 17.65 23.05 32.61 

Fe 20 4.73 7.94 13.20 21.57 

Fe 30 4.21 6.64 10.41 16.14 

Fe3O4 

Fe3O4 10 10.41 13.22 16.72 21.06 

Fe3O4 20 10.76 13.02 15.71 18.90 

Fe3O4 30 10.40 12.16 14.20 16.53 

Notes: T25, T50, T75, and T90 represent the times when methane production reaches 25%, 50%, 75%, and 90% of the 

maximum amount achieved at the end of the anaerobic digestion process, respectively. 
 

Lastly, Fig. 6 presents the comparison of 
average cumulative methane production 
among the studied treatments using the LSD 
method after the completion of the anaerobic 
digestion process. Notably, the figure 
highlights a significant difference (P > 0.05) in 
biomethane production between the different 
levels of DWTS, Fe, and Fe3O4. It can be seen 

that the treatment with DWTS6 exhibits the 
highest level of average cumulative methane 
production, and there is a statistically 
significant difference between this treatment 
and all the others, except DWTS12. This 
suggests that DWTS6 stands out as a 
particularly effective treatment for promoting 
methane production during the anaerobic 
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digestion process, warranting further consideration for practical applications. 
 

 
Fig.6. Comparison of average cumulative methane production among the treatments using 

the LSD method at 5% level after completion of the anaerobic digestion process 
 

Conclusion 

In this study, we investigated the impact of 
iron-based additives, including Fe, Fe3O4, and 
DWTS, at three levels, on the anaerobic 
digestion of dairy manure. Additionally, we 
introduced and evaluated 26 different non-
linear models to better understand the kinetics 
of methane production from the AD process. 
Among these models, the Michaelis-Menten 
model (M8) demonstrated the best 
performance in estimating the methane 
production kinetics for all nine treatments over 
time. 

The results revealed that different levels of 
DWTS exhibited the highest methane 
production compared to various levels of Fe 
and Fe3O4. Interestingly, Fe3O4 at level 30 
displayed the lowest biomethane production 
among all the Fe3O4 treatments. Moreover, 
DWTS at level 6 achieved the highest average 
cumulative methane production among the 
studied treatments using the LSD method at a 
5% significance level after the completion of 
the anaerobic digestion process. 

The methane production rate for treatments 
with DWTS and Fe reached its maximum 
before the 5th day, while in Fe3O4 treatments, 
it occurred around the 12th day. Additionally, 

while higher levels of Fe increased the 
methane production rate, increasing the level 
of Fe3O4 showed the opposite effect. Notably, 
among all the treatments, DWTS at level 12 
displayed the highest maximum methane 
production rate, peaking at approximately 
147.6 cc on the 6th day. 

These findings provide valuable insights 
into the kinetics of anaerobic digestion of 
dairy manure. However, further research is 
required to determine whether these results can 
be applied to other types of livestock manure 
as well. Future studies could involve applying 
the proposed models to different datasets to 
validate and refine our understanding of the 
anaerobic digestion process. 
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 یساز: مطالعه مدلیدام یکودها یهوازیآهن در هضم ب هیبر پا یهایافزودن ییکارا یبررس

 کیتینیس

 1، محمدعلی ابراهیمی نیک*1، عباس روحانی1جواد رضائی فر

 07/04/1402 تاریخ دریافت:
 07/05/1402تاریخ پذیرش: 

 1 چکیده

 یدنیآب آشام هیو لجن تصف هایمغذزیعنوان ربر آهن به یمبتن یهای، افزودن(AD) یهوازیهضم ب یداریبهبود عملکرد و پا یدر تلاش برا
(DWTS) متان در طول دیتول کینتیس یمطالعه به بررس نی. اتوانند نقش کلیدی داشته باشندمی AD یهاکه شامل غلظت پردازدیم گاوی یکودها 

کتابخانه گسترده از  کی. با استفاده از شودی( متریدر ل گرمیلیم 18و  6 ،12)  DWTS( وتریدر ل گرمیلیم 30و  10 ،20) 4O3Fe و  Feمختلف
متان  دیتول ندیکل فرآ یبرا یقو یهاکنندهینیبشیعنوان پقرار گرفتند و هشت مورد به ینامزد مورد بررس 26، (NLR) یخطریغ ونیرگرس یهامدل

شده آشکار کرد. مشخص یهایرا با افزودن AD دامی یکودها کینتیعنوان انتخاب برتر برجسته شد و سبه Michaelis-Menten ظاهر شدند. مدل
را ثبت کردند.  زانیم نیکمتر 4O3Fe 30و 4O3Fe 20کهی، در حالمراه داردهبهمتان را  دیتول نیبالاتر  DWTSها نشان داد که سطوح مختلفافتهی

کرد.  یمعرف تیمار نیعنوان موثرترنشان داد و آن را به 4O3Fe 30و  Fe20با سهیرا در مقا %42و  %34 باًیمتان تقر دیتول DWTS6ذکر است، قابل
 نیا ،یعمل میبر مفاه دی. با تأکدیدر روز ششم رس یسیس 6/147گذاشت و به  شیمتان را به نما دیتول زانیم نیبالاتر DWTS12 ن،یعلاوه بر ا

یافزودن لیپتانس یمطالعه با بررس نی. اکندیم دیتأک AD عملکرد یسازنهیپارامترها و به ریسا لیو تحل هیتجز یبرا یشنهادیبر کاربرد مدل پ قیتحق
 .سازدهموار می داریزباله پا تیریمد یهاوهیش شبردیو پ گاوی یمتان از کودها دیتول مسیر را در، DWTS بر آهن و یمبتن یها

 هوازیهضم بیسازی، مطالعه سینتیک، کود دامی، مدل ،عناصر کمیاب کلیدی: هایواژه
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