Document Type : Research Article-en
Authors
1 Department of Mechanical Engineering of Biosystems, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
2 Department of Mechanical Engineering of Biosystems, Faculty of Agriculture, Jahrom University, Jahrom, Iran
Abstract
Machinery traffic is associated with the application of stress onto the soil surface and is the main reason for agricultural soil compaction. Currently, probes are used for studying the stress propagation in soil and measuring soil stress. However, because of the physical presence of a probe, the measured stress may differ from the actual stress, i.e. the stress induced in the soil under machinery traffic in the absence of a probe. Hence, we need to model the soil-stress probe interaction to study the difference in stress caused by the probe under varying loading geometries, loading time, depth, and soil properties to find correction factors for probe-measured stress. This study aims to simulate the soil-stress probe interaction under a moving rigid wheel using finite element method (FEM) to investigate the agreement between the simulated with-probe stress and the experimental measurements and to compare the resulting ratio of with/without probe stress with previous studies. The soil was modeled as an elastic-perfectly plastic material whose properties were calibrated with the simulation of cone penetration and wheel sinkage into the soil. The results showed an average 28% overestimation of FEM-simulated probe stress as compared to the experimental stress measured under the wheel loadings of 600 and 1,200 N. The average simulated ratio of with/without probe stress was found to be 1.22 for the two tests which is significantly smaller than that of plate sinkage loading (1.9). The simulation of wheel speed on soil stress showed a minor increase in stress. The stress over-estimation ratio (i.e. the ratio of with/without probe stress) noticeably increased with depth but increased slightly with speed for depths below 0.2 m.
Keywords
Main Subjects
©2023 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).
- ABAQUS, (2019). ABAQUS user’s manuals version 6.19.1. Provid. RI ABAQUS, Inc. van den.
- Acquah, K., & Chen, Y. (2021). Discrete element modeling of soil compaction of a press-wheel. AgriEngineering, 3, 278-293. https://doi.org/10.3390/agriengineering3020019
- Akker, J. J. (2004). SOCOMO: a soil compaction model to calculate soil stresses and the subsoil carrying capacity. Soil and Tillage Research, 79, 113-127. https://doi.org/10.1016/j.still.2004.03.021
- Arefi, M., Karparvarfard, S. H., Azimi-Nejadian, H., & Naderi-Boldaji, M. (2022). Draught force prediction from soil relative density and relative water content for a non-winged chisel blade using finite element modelling. Journal of Terramechanics, 100, 73-80. https://doi.org/10.1016/j.jterra.2022.01.001
- Azimi-Nejadian, H., Karparvarfard, S. H., Naderi-Boldaji, M., & Rahmanian-Koushkaki, H. (2019). Combined finite element and statistical models for predicting force components on a cylindrical mouldboard plough. Biosystems Engineering, 186, 168-181. https://doi.org/10.1016/j.biosystemseng.2019.07.007
- Bahrami, M., Naderi-Boldaji, M., Ghanbarian, D., & Keller, T. (2022). Simulation of soil stress under plate sinkage loading: A comparison of finite element and discrete element methods. Soil and Tillage Research, 223, 105463. https://doi.org/10.1016/j.still.2022.105463
- Bahrami, M., Naderi-Boldaji, M., Ghanbarian, D., & Keller, T. (2023). Discrete element modelling of stress propagation in soil under a rigid wheel in a soil bin։ a simulation of probe inducing stress deviation and wheel speed. Biosystems Engineering, 230, 159-170. https://doi.org/10.1016/j.biosystemseng.2023.04.013
- Bolling, I. H. (1985). How to predict soil compaction from agricultural tires. Journal of Terramechanics, 22(4), 205-223. https://doi.org/10.1016/0022-4898(85)90017-5
- Boussinesq, M. J. (1885). Application Des Potentiels. Gauthier-Villars. https://books.google.com/books?id¼IYvpq89K_O8C
- Cueto, O. G., Coronel, C. E. I., Bravo, E. L., Morfa, C. A. R., & Suárez, M. H. (2016). Modelling in FEM the soil pressures distribution caused by a tyre on a Rhodic Ferralsol soil. Journal of Terramechanics, 63, 61-67. https://doi.org/10.1016/j.jterra.2015.09.003
- de Lima, R. P., & Keller, T. (2021). Soil stress measurement by load cell probes as influenced by probe design, probe position, and soil mechanical behavior. Soil and Tillage Research, 205, 104796. https://doi.org/10.1016/j.still.2020.104796
- De Pue, J., & Cornelis, W. M. (2019). DEM simulation of stress transmission under agricultural traffic Part 1: Comparison with continuum model and parametric study. Soil and Tillage Research, 195, 104408. https://doi.org/10.1016/j.still.2019.104408
- De Pue, J., Lamandé, M., & Cornelis, W. (2020). DEM simulation of stress transmission under agricultural traffic Part 2: Shear stress at the tyre-soil interface. Soil and Tillage Research, 203, 104660. https://doi.org/10.1016/j.still.2020.104660
- Farhadi, P., Golmohammadi, A., Sharifi Malvajerdi, A., & Shahgholi, G. (2020). Finite element modeling of the interaction of a treaded tire with clay-loam soil. Computers and Electronics in Agriculture, 162,793-806. https://doi.org/10.1016/j.compag.2019.05.031
- Frohlich, O. K. (1934). Druckverteilung im Baugrunde. Springer Verlag, Wien, pp. 178
- Gheshlaghi, F., & Mardani, A. (2021). Prediction of soil vertical stress under off-road tire using smoothed-particle hydrodynamics. Journal of Terramechanics, 95, 7-14. https://doi.org/10.1016/j.jterra.2021.02.004
- Hamza, M. A., & Anderson, W. K. (2005). Soil compaction in cropping systems: A review of the nature, causes and possible solutions. Soil and Tillage Research, 82(2), 121-145. https://doi.org/10.1016/j.still.2004.08.009
- Horn, R., Blackwell, P. S., & White, R. (1989). The effect of speed of wheeling on soil stresses, rut depth and soil physical properties in an ameliorated transitional red-brown earth. Soil and Tillage Research, 13, 353e364. https://doi.org/10.1016/0167-1987(89)90043-3
- Ibrahmi, A., Bentaher, H., Hbaieb, M., Maalej, A., & Mouazen, A. M. (2015). Study the effect of tool geometry and operational conditions on mouldboard plough forces and energy requirement: Part 1. Finite element simulation. Computers and Electronics in Agriculture, 117, 258-267. https://doi.org/10.1016/j.compag.2015.08.006
- Jimenez, K. J., Rolim, M. M., Gomes, I. F., de Lima, R. P., Berrío, L. L. A., & Ortiz, P. F. (2021). Numerical analysis applied to the study of soil stress and compaction due to mechanised sugarcane harvest. Soil and Tillage Research, 206, 104847. https://doi.org/10.1016/j.still.2020.104847
- Keller, T., Défossez, P., Weisskopf, P., Arvidsson, J., & Richard, G. (2007). SoilFlex: A model for prediction of soil stresses and soil compaction due to agricultural field traffic including a synthesis of analytical approaches. Soil and Tillage Research, 93(2), 391-411. https://doi.org/10.1016/j.still.2006.05.012
- Keller, T., Lamandé, M., Naderi-Boldaji, M., & de Lima, R. P. (2022). Soil Compaction Due to Agricultural Field Traffic: An Overview of Current Knowledge and Techniques for Compaction Quantification and Mapping. In: Saljnikov, E., Mueller, L., Lavrishchev, A., Eulenstein, F. (eds) Advances in Understanding Soil Degradation. Innovations in Landscape Research. Springer, Cham. https://doi.org/10.1007/978-3-030-85682-3_13
- Keller, T., Ruiz, S., Stettler, M., & Berli, M. (2016). Determining soil stress beneath a tire: measurements and simulations. Soil Science Society of America Journal, 80(3), 541-553. https://doi.org/10.2136/sssaj2015.07.0252
- Khalid, U., Farooq, K., & Mujtaba, H. (2018). On yield stress of compacted clays. International Journal of Geo-Engineering, 9(1), 1-16. https://doi.org/1186/s40703-018-0090-2
- Kirby, J. M. (1999a). Soil stress measurement: Part I. Transducer in a uniform stress field. Journal of Agricultural Engineering Research, 72(2), 151-160. https://doi.org/10.1006/jaer.1998.0357
- Kirby, J. M. (1999b). Soil stress measurement. Part 2: transducer beneath a circular loaded area. Journal of Agricultural Engineering Research, 73(2), 141-149. https://doi.org/10.1006/jaer.1998.0400
- Koolen, A. J., & Kuipers, H. (1983). Agricultural Soil Mechanics: Advanced Series in Agricultural Sciences Springer, Heidelberg, 241 pp. https://doi.org/10.1007/978-3-642-69010-5
- Labuz, J. F., & Theroux, B. (2005). Laboratory calibration of earth pressure cells. Geotechnical Testing Journal, 28(2), 188-196. https://doi.org/10.1520/GTJ12089
- Mahboub Yangeje, H., & Mardani, A. (2022). Investigating the interaction between soil and cultivator blade by numerical simulation and validation of results by soil bin tests. Journal of Agricultural Machinery, 12(4), 587-599. (in Persian with English abstract). https://doi.org/10.22067/jam.2021.70572.1041
- Naderi-Boldaji, M., Alimardani, R., Hemmat, A., Sharifi, A., Keyhani, A., Tekeste, M. Z., & Keller, T. (2013). 3D finite element simulation of a single-tip horizontal penetrometer–soil interaction. Part I: Development of the model and evaluation of the model parameters. Soil and Tillage Research, 134, 153-162. https://doi.org/10.1016/j.still.2013.08.002
- Naderi-Boldaji, M., Kazemzadeh, A., Hemmat, A., Rostami, S., & Keller, T. (2018). Changes in soil stress during repeated wheeling: A comparison of measured and simulated values. Soil Research, 56(2), 204-214. https://doi.org/10.1071/SR17093
- Naderi-Boldaji, M., Hajian, A., Ghanbarian, D., & Bahrami, M. (2018). Finite element simulation of plate sinkage, confined and semi-confined compression tests: A comparison of the response to yield stress. Soil and Tillage Research, 179, 63-70. https://doi.org/10.1016/j.still.2018.02.003
- Naderi-Boldaji, M., Karparvarfard, S. H., & Azimi-Nejadian, H. (2023). Investigation of the predictability of mouldboard plough draught from soil mechanical strength (cone index shear strength) using finite element modelling. Journal of Terramechanics, 108, 21-31. https://doi.org/10.1016/j.jterra.2023.04.001
- Nawaz, M. F., Bourrie, G., & Trolard, F. (2013). Soil compaction impact and modelling. A review. Agronomy for sustainable development, 33, 291-309. https://doi.org/10.1007/s13593-011-0071-8
- Or, D., & Ghezzehei, T. A. (2002). Modeling post-tillage soil structural dynamics: a review. Soil and Tillage Research, 64(1-2), 41-59. https://doi.org/10.1016/S0167-1987(01)00256-2
- Peth, S., Horn, R., Fazekas, O., & Richards, B. G. (2006). Heavy soil loading its consequence for soil structure, strength, deformation of arable soils. Journal of Plant Nutrition and Soil Science, 169(6), 775-783. https://doi.org/10.1002/jpln.200620112
- Pytka, J. A. (2013). Dynamics of wheelesoil systems: A soil stress and deformation-based approach. CRC Press, Taylor & Francis Group, LLC. https://doi.org/10.1201/b12729
- Rücknagel, J., Hofmann, B., Deumelandt, P., Reinicke, F., Bauhardt, J., Hülsbergen, K. J., & Christen, O. (2015). Indicator based assessment of the soil compaction risk at arable sites using the model REPRO. Ecological Indicators, 52, 341-352. https://doi.org/10.1016/j.ecolind.2014.12.022
- Schjønning, P., Lamandé, M., Tøgersen, F. A., Arvidsson, J., & Keller, T. (2008). Modelling effects of tyre inflation pressure on the stress distribution near the soil–tyre interface. Biosystems Engineering, 99(1), 119-133. https://doi.org/10.1016/j.biosystemseng.2007.08.005
- Shahgholi, G., Ghafouri Chiyaneh, H., & Mesri Gundoshmian, T. (2018). Modeling of soil compaction beneath the tractor tire using multilayer perceptron neural networks. Journal of Agricultural Machinery, 8(1), 105-118. (in Persian with English abstract). https://doi.org/10.22067/jam.v8i1.58891
- Shmulevich, I., Mussel, U., & Wolf, D. (1998). The effect of velocity on rigid wheel performance. Journal of Terramechanics, 35(3), 189-207. https://doi.org/10.1016/S0022-4898(98)00022-6
- Silva, R. P., Rolim, M. M., Gomes, I. F., Pedrosa, E. M., Tavares, U. E., & Santos, A. N. (2018). Numerical modeling of soil compaction in a sugarcane crop using the finite element method. Soil and Tillage Research, 181, 1-10. https://doi.org/10.1016/j.still.2018.03.019
- Söhne, W. (1953). Druckverteilung im Boden und Bodenformung unter Schlepperreifen (Pressure distribution in the soil and soil deformation under tractor tyres). Grundl Land Technik, 5, 49-63. https://doi.org/10.1007/BF01512930
- Stafford, J. V., & de Carvalho Mattos, P. (1981). The effect of forward speed on wheel-induced soil compaction: laboratory simulation and field experiments. Journal of Agricultural Engineering Research, 26(4), 333-347. https://doi.org/10.1016/0021-8634(81)90075-5
- Stettler, M., Keller, T., Weisskopf, P., Lamandé, M., Lassen, P., & Schjønning, P. (2014). Terranimo®–a web-based tool for evaluating soil compaction. Landtechnik, 69(3), 132-138.
- Taghavifar, H., & Mardani, A. (2014). Effect of velocity, wheel load and multipass on soil compaction. Journal of the Saudi Society of Agricultural Sciences, 13(1), 57-66. https://doi.org/10.1016/j.jssas.2013.01.004
- Ucgul, M., Saunders, C., & Fielke, J. M. (2017). Particle and geometry scaling of the hysteretic spring/linear cohesion contact model for discrete element modelling of soil-tool simulation. ASABE Paper No. 1701372. St. Joseph, MI: ASABE. https://doi.org/10.13031/aim.201701372
- Van den Akker, J. J. H. (2004). SOCOMO: a soil compaction model to calculate soil stresses and the subsoil carrying capacity. Soil and Tillage Research, 79(1), 113-127. https://doi.org/10.1016/j.still.2004.03.021
- Weiler Jr, W. A., & Kulhawy, F. H. (1982). Factors affecting stress cell measurements in soil. Journal of the Geotechnical Engineering Division, 108(12), 1529-1548. https://doi.org/10.1061/AJGEB6.0001393
- Xia, K. (2011). Finite element modeling of tire/terrain interaction: Application to predicting soil compaction and tire mobility. Journal of Terramechanics, 48(2), 113-123. https://doi.org/10.1016/j.jterra.2010.05.001
Send comment about this article