با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته‌ کارشناسی ارشد مکانیزاسیون کشاورزی، گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

2 دانش‌آموخته دکتری مکانیزاسیون کشاورزی، گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، اهواز، ایران

3 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

استفاده کارآمد از انرژی در تولید شلتوک برنج، با کاهش انتشار گازهای گلخانه‌ای، از تخریب بوم‌نظام‌های کشاورزی جلوگیری نموده و سبب توسعه کشاورزی پایدار می‌شود. هدف از این مطالعه، بررسی، مقایسه، بهینه‌سازی مصرف انرژی و مدل‌سازی عملکرد محصول در تولید دو رقم شلتوک با الگوریتم ژنتیک-کلونی زنبور عسل مصنوعی بود. داده‌ها از طریق مصاحبه با 120 کشاورز و صاحب مزرعه جمع‌آوری شد. نتایج نشان داد که در رقم مرغوب هاشمی و رقم پُرمحصول جمشیدی میانگین کل انرژی مصرفی به‌ترتیب 55.973 و 54.796 گیگاژول بر هکتار بود و میانگین کل انرژی تولیدی به‌ترتیب 30.74 و 62.52 گیگاژول بر هکتار به‌دست آمد که نشان از افزایش 2.03 برابری انرژی تولیدی در رقم جمشیدی نسبت به رقم هاشمی داشت. ارزیابی شاخص‌های R2 ،RMSE ،MAPE ،EF و مقایسه آماری میانگین، واریانس و توزیع آماری در مدل تلفیقی الگوریتم ژنتیک-کلونی زنبور عسل مصنوعی بیانگر نتایج مطلوب الگوریتم زنبور عسل مصنوعی به‌عنوان تابع برازندگی الگوریتم ژنتیک بود. همچنین، نتایج بهینه‌سازی مصرف انرژی توسط الگوریتم ترکیبی ژنتیک-کلونی زنبور عسل مصنوعی نشان داد که بیشتر منابع مصرفی از حالت بهینه فاصله دارند که با مدیریت صحیح امکان صرفه‌جویی مصرف انرژی در رقم‌های هاشمی و جمشیدی به‌ترتیب 53.96 و 39.41 درصد وجود دارد. ارقام پُرمحصول با هدف تأمین امنیّت غذایی، آبی و انرژی اصلاح شده‌اند. نتایج پژوهش حاضر، می‌تواند در شناسایی پتانسیل صرفه‌جویی انرژی در صنعت برنج کشور کمک به‌سزایی داشته باشد.

کلیدواژه‌ها

موضوعات

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Anissa, R. D., Mahmudy, W., & Widodo, A. W. (2019). Optimisation of Rice Fertiliser Composition Using Genetic Algorithms. Knowledge Engineering and Data Science, 2(2), 72-81. https://doi.org/10.17977/um018v2i22019p72-81
  2. Baradaran Motie, J., Aghkhani, M. H., Rohani, A., & Lakzian, A. (2019). Modeling the Effective Parameters on Accuracy of Soil Electrical Conductivity Measurement Systems Using RBF Neural Network. Journal of Agricultural Machinery, 9(1), 139-154. (in Persian with English abstract). https://doi.org/10.22067/jam.v1i1.10075
  3. Baruah, K. K., Gogoi, B., & Gogoi, P. (2010). Plant Physiological and Soil Characteristics Associated with Methane and Nitrous Oxide Emission from Rice Paddy. Physiology and Molecular Biology of Plants International. A Journal of Functional Plant Biology, 16, 79-91. https://doi.org/10.1007/s12298-010-0010-1
  4. Behrang, M. A., Assareh, E., Assari, M. R., & Ghanbarzadeh, A. (2011). Using Bees Algorithm and Artificial Neural Network to Forecast World Carbon Dioxide Emission. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 33(19), 1747-1759. https://doi.org/10.1080/15567036.2010.493920
  5. Bolandnazar, E., Rohani, A., & Taki, M. (2019). Energy Consumption Forecasting in Agriculture by Artificial Intelligence and Mathematical Models. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(13), 1618-1632 https://doi.org/10.1080/15567036.2019.1604872
  6. Camci, E., Kripalani, D. R., Ma, L., Kayacan, E., & Khanesar, M. A. (2018). An Aerial Robot for Rice Farm Quality Inspection with Type-2 Fuzzy Neural Networks Tuned by Particle Swarm Optimization-Sliding Mode Control Hybrid Algorithm. Swarm and Evolutionary Computation, 41, 1-8. https://doi.org/10.1016/j.swevo.2017.10.003
  7. Chauhan, N. S., Mohapatra, P. K. J., & Pandey, K. P. (2006). Improving Energy Productivity in Paddy Production through Benchmarking: An Application of Data Envelopment Analysis. Energy Conversion and Management, 47, 1063-1085. https://doi.org/10.1016/j.enconman.2005.07.004
  8. Chen, X., Mao, Y., Ma, X., & Qi, L. (2020). A Tactile Method for Rice Plant Recognition Based on Machine Learning. Sensors, 20)18), https://doi.org/10.3390/s20185135
  9. Cochran, W. G. (1977). Sampling Techniques. John Wiley & Sons, New York.
  10. Cubero, S., Aleixos, N., Albert, F., Torregrosa, A., Ortiz, C., García-Navarrete, O., & Blasco, J. (2014). Optimised Computer Vision System for Automatic Pre-grading of Citrus Fruit in the Field Using A Mobile Platform. Precision agriculture 15, 80-94. https://doi.org/10.1007/s11119-013-9324-7
  11. Elsoragaby, S., Yahya, A., Mahadi, M. R., Nawi, N. M., Mairghany, M., Elhassan, S. M. M., & Kheiralla, A. F. (2020). Applying Multi-Objective Genetic Algorithm (MOGA) to Optimize the Energy Inputs and Greenhouse Gas Emissions (GHG) in Wetland Rice Production. Energy Reports, 6, 2988-2998. https://doi.org/10.1016/j.egyr.2020.10.010
  12. Fallah-Shamsi, S. A., Pirdashti, H., Ebadi, A., Esfahani, M., & Raeini, M. (2017). Response of Root Characteristics and Dry Matter Partitioning in 40 Improved and Local rice (Oryza sativa ) Genotypes Under Deficit Irrigation. Journal of Crop Breeding, 9(22), 63-72. (In Persian). https://doi.org/10.29252/jcb.9.22.63
  13. Geleta, D. K., & Manshahia, M. S. (2021). Artificial Bee Colony-Based Optimization of Hybrid Wind and Solar Renewable Energy System. Research Anthology on Clean Energy Management and Solutions. 819-842. https://doi.org/10.4018/978-1-5225-9420-8.CH017
  14. Gogoi, N., Baruah, K. K., & Gupta, P. K. (2008). Selection of Rice Genotypes for Lower Methane Emission. Agronomy for Sustainable Development, 28, 181-186. https://doi.org/10.1051/agro:2008005
  15. Gracia, C., Diezma-Iglesias, B., Barreiro, P., Gardini, S. T., & Aditya, S. K. (2013). A Hybrid Genetic Algorithm for Route Optimization in the Bale Collecting Problem. Spanish Journal of Agricultural Research, 11, 603-614. https://doi.org/10.5424/sjar/2013113-3635
  16. Gummert, M., Cabardo, C., Quilloy, R., Aung, Y. L., Thant, A. M., Kyaw, M. A., Labios, R., Htwe, N. M., & Singleton, G. R. (2020). Assessment of Post-Harvest Losses and Carbon Footprint in Intensive Lowland Rice Production in Myanmar. Scientific Reports, 10(1), 1-13. https://doi.org/10.1038/s41598-020-76639-5
  17. Hosseinzadeh-Bandbafha, H., Safarzadeh, D., Ahmadi, E., & Nabavi-Pelesaraei, A. (2018). Optimization of Energy Consumption of Dairy Farms Using Data Envelopment Analysis - A case study: Qazvin city of Iran. Journal of the Saudi Society of Agricultural Sciences, 17, 217-228. https://doi.org/10.1016/j.jssas.2016.04.006
  18. Imani, A., Hosseinpour, S., Keyhani, A., & Azimzadeh, M. (2020). Modeling and Optimization of Oligonucleotide-Based Nanobiosensor Using Artificial Neural Network and Genetic Algorithm Based Procedure. Iranian Journal of Biosystems Engineering, 51(1), 171-181. (In Persian with English abstract). https://doi.org/10.22059/ijbse.2019.290631.665231
  19. Jiang, Y., Jan van Groenigen, K., Huang S., Bruce A. H., van Kessel C. H., Shuijin, Zhang, J., Wu, L., Yan, X., Wang, L., Chen, J., Hang, X., Zhang, Y., Horwath, W. R., Ye, R., Linquist, B. A., Song, Z., Zheng, C., Deng, A., & Zhang, W. (2017). Higher Yields and Lower Methane Emissions with New Rice Cultivars. Global Change Biology, 23(11), 4728-4738. https://doi.org/10.1111/gcb.13737
  20. Karaboga, D., & Akay, (2009). A Comparative Study of Artificial Bee Colony Algorithm. Applied Mathematics and Computation, 214, 108-132. https://doi.org/10.1016/j.amc.2009.03.090
  21. Kazemi, H., Kamkar, B., Lakzaei, S., Badsar, M., & Shahbyki, M. (2015). Energy Flow Analysis for Rice Production in Different Geographical Regions of Iran. Energy, 84, 390-396. https://doi.org/10.1016/j.energy.2015.03.005
  22. Kitani, O., Jungbluth, T., Peart, R. M., & Ramdani, A. (1999). CIGR handbook of agricultural engineering. Energy and biomass engineering, 5, 330.
  23. Le Dinh, L., Vo Ngoc, D., & Vasant, P. (2013). Artificial Bee Colony Algorithm for Solving Optimal Power Flow Problem. The Scientific World Journal. https://doi.org/10.1155/2013/159040
  24. Loganthurai, P., Rajasekaran, V., & Gnanambal, K. (2016). Evolutionary Algorithm Based Optimum Scheduling of Processing Units in Rice Industry to Reduce Peak Demand. Energy, 107, 419-430. https://doi.org/10.1016/j.energy.2016.04.027
  25. Mousavi-Avval, S. H., Rafiee, S., & Mohammadi, A. (2011). Optimization of Energy Consumption and Input Costs for Apple Production in Iran Using Data Envelopment Analysis. Energy, 36(2), 909-916. https://doi.org/10.1016/j.energy.2010.12.020
  26. Nabavi-Pelesaraei, A., Abdi, R., Rafiee, S., & Taromi, K. (2014). Applying Data Envelopment Analysis Approach to Improve Energy Efficiency and Reduce Greenhouse Gas Emission of Rice Production. Engineering in Agriculture, Environment and Food, 7(4), 155-162. https://doi.org/10.1016/j.energy.2010.12.020
  27. Nabavi-Pelesaraei, A., Rafiee, S., Mohtasebi, S. S., Hosseinzadeh-Bandbafha, H., & Chau, K. W. (2017). Energy Consumption Enhancement and Environmental Life Cycle Assessment in Paddy Production Using Optimization Techniques. Journal of Cleaner Production, 16(2), 586-571. https://doi.org/10.1016/j.jclepro.2017.06.071
  28. Nabavi-Pelesaraei, A., Rafiee, S., Mohtasebi, S. S., Hosseinzadeh-Bandbafha, H., & Chau, K. W. (2019). Assessment of Optimized Pattern in Milling Factories of Rice Production Based on Energy, Environmental and Economic Objectives. Energy, 169, 1273-1259. https://doi.org/10.1016/j.energy.2018.12.106
  29. Nassiri, S. M., & Singh, S. (2009). Study on Energy Use Efficiency for Paddy Crop Using Data Envelopment Analysis (DEA) Technique. Applied Energy, 86(7), 1320-1325. https://doi.org/10.1016/j.apenergy.2008.10.007
  30. Ozkan, B., Akcaoz, H., & Fert, C. (2004). Energy input–output analysis in Turkish agriculture. Renewable energy, 29(1), 39-51. https://doi.org/10.1016/S0960-1481(03)00135-6
  31. Pishgar-Komleh, S. H., Sefeedpari, P., & Rafiee, S. (2011). Energy and Economic Analysis of Rice Production under Different Farm Levels in Guilan Province of Iran. Energy, 36(10), 5824-5831. https://doi.org/10.1016/j.energy.2011.08.044
  32. Pour-Bagher, R., Rohani, A., Rahmati, M. H., & Abbaspour-Fard, M. H. (2018). Modeling and Optimization of Drying Process of Paddy in Infrared and Warm Air Fluidized Bed Dryer. Agricultural Engineering International: CIGR Journal, 20(3), 162-171.
  33. Riahi, V., & Javan, F. (2016). The Role of Climate Comfort in the Diversification of Livelihood in Rural Areas. Geography, Civil Engineering and Urban Management Studies, 2(4), 35-47. (in Persian with English Abstract).
  34. Rohani, A., Abbaspour-Fard, M. H., & Abdolahpour, S. (2011). Prediction of Tractor Repair and Maintenance Costs Using Artificial Neural Network. Expert Systems with Applications, 38, 8999-9007. https://doi.org/10.1016/j.eswa.2011.01.118
  35. Salehi, M., Ebrahimi, R., Maleki, A., & Mobtaker, H. G. (2014). An assessment of energy modeling and input costs for greenhouse button mushroom production in Iran. Journal of Cleaner Production, 64, 377-383. https://doi.org/10.1016/j.jclepro.2013.09.005
  36. Sarai, H. (1993). An Introduction to Research Sampling. The Organization for Researching and Composing University Textbooks in the Humanities (SAMT), Tehran.
  37. Shabri, A., Samsudin, R., & Hezzam, E. A. (2021). Short-term co2 emissions forecasting using multi-variable grey model and artificial bee colony (abc) algorithm approach. PP 856-598 in F. Saeed F. Mohammed A. Al-Nahari eds. Innovative Systems for Intelligent Health Informatics. IRICT 2021. Lecture Notes on Data Engineering and Communications Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-70713-2_54
  38. Sharifi, S., Aghkhani, M. H., & Rohani, A. (2021). Investigation of Brown Rice Losses in the Drying Process. Journal of Agricultural Machinery. 14(2) (In Persian with English Abstract). https://doi.org/10.22067/jam.2021.69208.1026
  39. Sharma, D. K., & Jana, R. K. (2009). Fuzzy Goal Programming Based Genetic Algorithm Approach to Nutrient Management for Rice Crop Planning. International Journal of Production Economics, 1(1), 12. https://doi.org/10.1016/j.ijpe.2009.05.009
  40. Shukla, A. K. (2020). Multi-Population Adaptive Genetic Algorithm for Selection of Microarray Biomarkers. Neural Computing and Applications, 32(15), 11897-11918. https://doi.org/10.1007/s00521-019-04671-2
  41. Taheri-Rad, A., Khojastehpour, M., Rohani, A., & Khoramdel, S. (2017). Assessing the Energy Consumption Efficiency of Different Long Grain Rice Varieties in Golestan Province. Cereal Research, 7(1), 51-66. (in Persian with English abstract). https://doi.org/10.22124/c.2017.2428
  42. Taki, M., & Farhadi, R. (2021). Application of Artificial Neural Network Models (MLP and RBF) and Support Vector Machine (SVM) to Estimate the Shadow in Flat-Plate Solar Collectors in Iran. Iranian Journal of Biosystems Engineering, 52(2), 197-209. (in Persian with English abstract). https://doi.org/10.22059/ijbse.2021.310127.665339
  43. Van-Hung, N., Sander, B. O., Quilty, J., Balingbing, C., Castalone, A. G., Romasanta, R., Alberto, M. C. R., Sandro, J. M., Jamieson, C., & Gummert, M. (2019). An Assessment of Irrigated Rice Production Energy Efficiency and Environmental Footprint with In-field and Off-field Rice Straw Management Practices. Scientific Reports, 9(1), 1-12. https://doi.org/10.1038/s41598-019-53072-x
  44. Wan, S., Chang, S. H., Peng, C. T., & Chen, Y. K. (2017). A Novel Study of Artificial Bee Colony With Clustering Technique on Paddy Rice Image Classification. Arabian Journal of Geosciences, 10(9), 215. https://doi.org/10.1007/s12517-017-2992-2
  45. Wang, Y., Wu, P., Mei, F., Ling, Y., Qiao, Y., Liu, C., Leghari, S. H., Guan, X., & Wang, T. (2021). Does Continuous Straw Returning Keep China Farmland Soil Organic Carbon Continued Increase? A Meta-analysis. Journal of Environmental Management, 288, https://doi.org/10.1016/j.jenvman.2021.112391
  46. Yang, X. S. (2013). Optimization and metaheuristic algorithms in engineering. PP 1-23 in A. H. Gandomi S. Talatahari and A. H. Alavi eds. Metaheursitics in Water, Geotechnical and Transport Engineering. Elsevier. https://doi.org/10.1016/B978-0-12-398296-4.00001-5
  47. Yarpiz. (2021). Bees Algorithm (BeA) in MATLAB: MATLAB Central File Exchange.
  48. Yodkhum, S., Sampattagul, S., & Gheewala, S. H. (2018). Energy and Environmental Impact Analysis of Rice Cultivation and Straw Management in Northern Thailand. Environmental Science and Pollution Research, 25(18), 17654-17664. https://doi.org/10.1007/s11356-018-1961-y
  49. Zeng, S., Wu, T., Hu, L., Tang, L., & Liu, S. (2019). Crop Row Detection by ABC Clustering Algorithm in Paddy. International Agricultural Engineering Journal, 28(1), 304-309.
CAPTCHA Image