with the collaboration of Iranian Society of Mechanical Engineers (ISME)

Document Type : Research Article-en

Authors

1 Department of Biosystems Engineering, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran

2 Department of Computer Engineering, School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran

Abstract

In some countries, people commonly consume hazelnuts in their shells to extend shelf life or due to technological limitations. Therefore, open-shell hazelnuts are more marketable. At the semi-industrial scale, open-shell and closed-shell hazelnuts are currently separated from each other through visual inspection. This study aims to develop a new algorithm to separate open-shell hazelnuts from cracked or closed-shell hazelnuts. In the first approach, dimension reduction techniques such as Sequential Forward Feature Selection (SFFS) and Principal Component Analysis (PCA) were used to select or extract a combination of color, texture, and grayscale features for the model’s input. In the second approach, individual features were used directly as inputs. In this study, three famous machine learning models, including Support Vector Machine (SVM), K-nearest neighbors (KNN), and Multi-Layer Perceptron (MLP) were employed. The results indicated that the SFFS method had a greater effect on improving the performance of the models than the PCA method. However, there was no significant difference between the performance of the models developed with combined features (98.00%) and that of the models using individual features (98.67%). The overall results of this study indicated that the MLP model, with one hidden layer, a dropout of 0.3, and 10 neurons using Histogram of Oriented Gradients (HOG) features as input, is a good choice for classifying hazelnuts into two classes of open-shell and closed-shell.

Keywords

Main Subjects

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Çolak, A. B. (2021). A novel comparative investigation of the effect of the number of neurons on the predictive performance of the artificial neural network: An experimental study on the thermal conductivity of ZrO2International Journal of Energy Research45(13), 18944-18956. https://doi.org/101002/er6989
  2. FAOSTAT. (2021). Crops production data. http://wwwfaoorg/faostat/en/#data/QC. Accessed 20 March 2021
  3. Garcia-Allende, P. B., Mirapeix, J., Conde, O. M., Cobo, A., & Lopez-Higuera, J. M. (2009). Spectral processing technique based on feature selection and artificial neural networks for arc-welding quality monitoring. Ndt & E International42(1), 56-63. https://doi.org/101016/jndteint200807004
  4. Geler, Z., Kurbalija, V., Radovanović, M., & Ivanović, M. (2016). Comparison of different weighting schemes for the k NN classifier on time-series data. Knowledge and Information Systems48, 331-378. https://doi.org/101007/s10115-015-0881-0
  5. Giraudo, A., Calvini, R., Orlandi, G., Ulrici, A., Geobaldo, F., & Savorani, F. (2018). Development of an automated method for the identification of defective hazelnuts based on RGB image analysis and colourgrams. Food Control94, 233-240. https://doi.org/101016/jfoodcont201807018
  6. Gopi, A. P., Jyothi, R. N. S., Narayana, V. L., & Sandeep, K. S. (2023). Classification of tweets data based on polarity using improved RBF kernel of SVM. International Journal of Information Technology15(2), 965-980. https://doi.org/101007/s41870-019-00409-4
  7. Gou, J., Du, L., Zhang, Y., & Xiong, T. (2012). A new distance-weighted k-nearest neighbor classifier.  Inf. Comput. Sci9(6), 1429-1436.
  8. Hallee, M. J., Napolitano, R. K., Reinhart, W. F., & Glisic, B. (2021). Crack detection in images of masonry using cnns. Sensors21(14), 4929. https://doi.org/103390/s21144929
  9. Heaton, J. (2008). Introduction to Neural Networks with Java. Heaton Research, Inc.
  10. Hosseinpour-Zarnaq, M., Omid, M., Taheri-Garavand, A., Nasiri, A., & Mahmoudi, A. (2022). Acoustic signal-based deep learning approach for smart sorting of pistachio nuts. Postharvest Biology and Technology185, 111778.
  11. Ibba, P., Tronstad, C., Moscetti, R., Mimmo, T., Cantarella, G., Petti, L., ... & Lugli, P. (2021). Supervised binary classification methods for strawberry ripeness discrimination from bioimpedance data. Scientific Reports11(1), 11202. https://doi.org/10.1038/s41598-021-90471-5
  12. Jolliffe, I. T. (2002). Principal component analysis for special types of data(pp. 338-372). Springer New York. https://doi.org/10.1007/0-387-22440-8_13
  13. Kalkan, H., & Yardimci, Y. (2006, September). Classification of hazelnut kernels by impact acoustics. In 2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing (pp. 325-330). IEEE. https://doi.org/101109/MLSP2006275569
  14. Komal, K., & Sonia, D. (2019). GLCM algorithm and SVM classification method for Orange fruit quality assessment. International Journal of Engineering Research & Technology (IJERT)8(9), 697-703.
  15. Lashgari, M., Imanmehr, A., & Tavakoli, H. (2020). Fusion of acoustic sensing and deep learning techniques for apple mealiness detection. Journal of Food Science and Technology57, 2233-2240. https://doi.org/101007/s13197-020-04259-y
  16. Li, J., Lu, H., & Liu, X. (2014). Feature selection method based on SFFS and SVM for facial expression recognition. In 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. xxx-xxx). IEEE. https://doi.og/10.1109/SMC.2014.6974454
  17. Liu, Y., Starzyk, J. A., & Zhu, Z. (2007). Optimizing number of hidden neurons in neural networks. EeC1(1), 6.
  18. Lu, F., Wang, D., Wu, H., & Xie, W. (2016). A multi-classifier combination method using sffs algorithm for recognition of 19 human activities. In Computational Science and Its Applications–ICCSA 2016: 16th International Conference, Beijing, China, July 4-7, 2016, Proceedings, Part II 16 (pp. 519-529). Springer International Publishing. https://doi.org/101007/978-3-319-42108-7_40
  19. Luo, T., Zhao, J., Gu, Y., Zhang, S., Qiao, X., Tian, W., & Han, Y. (2023). Classification of weed seeds based on visual images and deep learning. Information Processing in Agriculture10(1), 40-51. https://doi.org/10.1016/j.inpa.2021.10.002
  20. Manekar, V., & Waghmare, K. (2014). Intrusion detection system using support vector machine (SVM) and particle swarm optimization (PSO). International Journal of Advanced Computer Research4(3), 808.
  21. Menesatti, P., Costa, C., Paglia, G., Pallottino, F., D'Andrea, S., Rimatori, V., & Aguzzi, J. (2008). Shape-based methodology for multivariate discrimination among Italian hazelnut cultivars. Biosystems Engineering101(4), 417-424. https://doi.org/101016/jbiosystemseng200809013
  22. Momeny, M., Jahanbakhshi, A., Jafarnezhad, K., & Zhang, Y. D. (2020). Accurate classification of cherry fruit using deep CNN based on hybrid pooling approach. Postharvest Biology and Technology, 166, 111204. https://doi.org/10.1016/j.postharvbio.2020.111204
  23. Omid, M. (2011). Design of an expert system for sorting pistachio nuts through decision tree and fuzzy logic classifier. Expert Systems with Applications, 38(4), 4339-4347. https://doi.org/10.1016/j.eswa.2010.09.103
  24. Pourdarbani, R., Sabzi, S. (2022). Detection of Cucumber Fruits with Excessive Consumption of Nitrogen using Hyperspectral imaging (With Emphasis on Sustainable Agriculture). Journal of Environmental Sciences Studies7(4), 5485-5492.‎ https://doi.org/1022034/JESS2022153495
  25. Pourreza, A., Pourreza, H., Abbaspour-Fard, M. H., & Sadrnia, H. (2012). Identification of nine Iranian wheat seed varieties by textural analysis with image processing. Computers and Electronics in Agriculture83, 102-108. https://doi.org/10.1016/j.compag.2012.02.005
  26. Shojaeian, A., Bagherpour, H., Bagherpour, R., Parian, J. A., Fatehi, F., & Taghinezhad, E. (2023). The Potential Application of Innovative Methods in Neural Networks for Surface Crack Recognition of Unshelled Hazelnut. Journal of Food Processing and Preservation, 2023(1), 2177724. https://doi.org/10.1155/2023/2177724
  27. Singh, S., & Singh, N. P. (2019). Machine learning-based classification of good and rotten apple. In Recent Trends in Communication, Computing, and Electronics: Select Proceedings of IC3E 2018(pp. 377-386). Springer Singapore. https://doi.org/101007/978-981-13-2685-1_36
  28. Tan, S. S., Hoon, G. K., Yong, C. H., Kong, T. E., & Lin, C. S. (2005). Mapping search results into self-customized category hierarchy. In Intelligent Information Processing II: IFIP TC12/WG12. 3 International Conference on Intelligent Information Processing (IIP2004) October 21–23, 2004, Beijing, China 2 (pp. 311-323). Springer US. https://doi.org/101007/0-387-23152-8_41
  29. Taner, A., Öztekin, Y. B., & Duran, H. (2021). Performance analysis of deep learning CNN models for variety classification in hazelnut. Sustainability13(12), 6527. https://doi.org/103390/su13126527
  30. Tarakci, F., & Ozkan, I. A. (2021). Comparison of classification performance of kNN and WKNN algorithms. Selcuk University Journal of Engineering Sciences20(2), 32-37.
  31. Unay, D., Gosselin, B., & Debeir, O. (2006, January). Apple stem and calyx recognition by decision trees. In Proceedings of the 6th IASTED International Conference on Visualization, Imaging, and Image Processing, VIIP (pp. 549-552).
  32. Vidyarthi, S. K., Singh, S. K., Xiao, H. W., & Tiwari, R. (2021). Deep learnt grading of almond kernels. Journal of Food Process Engineering44(4), e13662. https://doi.org/10.1111/jfpe.13662
  33. Wang, W., Jung, J., McGorrin, R. J., & Zhao, Y. (2018). Investigation of the mechanisms and strategies for reducing shell cracks of hazelnut (Corylus avellana) in hot-air drying. Lwt98, 252-259. https://doi.org/101016/jlwt201808053
  34. Way, T. W., Sahiner, B., Hadjiiski, L. M., & Chan, H. P. (2010). Effect of finite sample size on feature selection and classification: a simulation study. Medical Physics37(2), 907-920. https://doi.org/101118/13284974
  35. Yang, R., Wu, Z., Fang, W., Zhang, H., Wang, W., Fu, L., ... & Cui, Y. (2023). Detection of abnormal hydroponic lettuce leaves based on image processing and machine learning. Information Processing in Agriculture10(1), 1-10. https://doi.org/10.1016/j.inpa.2021.11.001
CAPTCHA Image