Document Type : Research Article-en
Authors
1 Department of Mechanical Engineering of Biosystems, Faculty of Agriculture, University of Jiroft, Jiroft, Iran
2 Department of Biosystems Engineering, College of Agriculture, Shiraz University, Shiraz, Iran
3 Department of Mechanical Engineering, University of Jiroft, Jiroft, Iran
Abstract
In this study, the air drying of cumin seeds was boosted by cold plasma pre-treatment (CPt) followed by high-power ultrasound waves (USp). To examine the impact of included effects, different CP exposure times (0, 15, and 30 s), sonication powers (0, 60, 120, and 180 W), and drying air temperatures (30, 35, and 40 ºC) were selected as input variables. A series of well-designed experiments were conducted to evaluate drying time, effective moisture diffusivity, and energy consumption, as well as color change and rupture force of dried seeds for each drying program. Numerical investigations can effectively bypass the challenges associated with experimental analysis. Therefore, the wavelet-based neural network (WNN), the multilayer perceptron neural network (MLPNN), and the radial-basis function neural network (RBFNN), as three well-known artificial neural networks models, were used to map the inputs and output data and the results were compared with the Multiple Quadratic Regression (MQR) analysis. According to the results, the WNN model with an average correlation coefficient of R2 > 0.92 for the train data set, and R2 > 0.83 for the test data set provided the most beneficial tool for evaluating the drying process of cumin seeds.
Keywords
Main Subjects
©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).
- Aghbashlo, M., Kianmehr, M. H., & Arabhosseini, A. (2008). Energy and exergy analyses of thin-layer drying of potato slices in a semi-industrial continuous band dryer. Drying Technology, 26(12), 1501-1508. https://doi.org/10.1080/07373930802426861
- Akpinar, E. K., Midilli, A., & Bicer, Y. (2005). Energy and exergy of potato drying process via cyclone type dryer. Energy Conversion and Management, 46(15-16), 2530-2552. https://doi.org/10.1016/j.enconman.2004.10.019
- Amini, G., Salehi, F., & Rasouli, M. (2021). Drying kinetics of basil seed mucilage in an infrared dryer: Application of GA-ANN and ANFIS for the prediction of drying time and moisture ratio. Journal of Food Processing and Preservation, 45(3), e15258. https://doi.org/10.1111/jfpp.15258
- Bai, J.-W., Xiao, H.-W., Ma, H.-L., & Zhou, C.-S. (2018). Artificial Neural Network Modeling of Drying Kinetics and Color Changes of Ginkgo Biloba Seeds during Microwave Drying Process. Journal of Food Quality, 2018, 3278595. https://doi.org/10.1155/2018/3278595
- Barreiro, P., Steinmetz, V., & Ruiz-Altisent, M. (1997). Neural bruise prediction models for fruit handling and machinery evaluation. Computers and Electronics in Agriculture, 18(2-3), 91-103. https://doi.org/10.1016/S0168-1699(97)00040-1
- Bhaskaran, P. E., Chennippan, M., & Subramaniam, T. (2020). Future prediction & estimation of faults occurrences in oil pipelines by using data clustering with time series forecasting. Journal of Loss Prevention in the Process Industries, 66, 104203. https://doi.org/10.1016/j.jlp.2020.104203
- Chatzilia, T., Kaderides, K., & Goula, A. M. (2023). Drying of peaches by a combination of convective and microwave methods. Journal of Food Process Engineering, 46(4), e14296. https://doi.org/10.1111/jfpe.14296
- Dhurve, P., Tarafdar, A., & Arora, V. K. (2021). Vibro-Fluidized Bed Drying of Pumpkin Seeds: Assessment of Mathematical and Artificial Neural Network Models for Drying Kinetics. Journal of Food Quality, 2021, 7739732. https://doi.org/10.1155/2021/7739732
- Dibagar, N., Kowalski, S. J., Chayjan, R. A., & Figiel, A. (2020). Accelerated convective drying of sunflower seeds by high-power ultrasound: Experimental assessment and optimization approach. Food and Bioproducts Processing, 123, 42-59. https://doi.org/10.1016/j.fbp.2020.03.002
- Dotto, G. L., Souza, T. B., Simoes, M. R., Morejon, C. F., & Moreira, M. F. P. (2017). Diffusive‐convective model considering the shrinkage applied for drying of pears (pyrus). Journal of Food Process Engineering, 40(4), e12503. https://doi.org/10.1111/jfpe.12503
- Gong, C., Liao, M., Zhang, H., Xu, Y., Miao, Y., & Jiao, S. (2020). Investigation of hot air–assisted radio frequency as a final-stage drying of pre-dried carrot cubes. Food and Bioprocess Technology, 13(3), 419-429. https://doi.org/10.1007/s11947-020-02560-0
- Guiné, R. P., Barroca, M. J., Gonçalves, F. J., Alves, M., Oliveira, S., & Mendes, M. (2015). Artificial neural network modelling of the antioxidant activity and phenolic compounds of bananas submitted to different drying treatments. Food Chemistry, 168, 454-459. https://doi.org/10.1016/j.foodchem.2014.07.022
- Guo, Y.-R., An, Y.-M., Jia, Y.-X., & Xu, J.-G. (2018). Effect of drying methods on chemical composition and biological activity of essential oil from cumin (Cuminum cyminum). Journal of Essential Oil Bearing Plants, 21(5), 1295-1302. https://doi.org/10.1080/0972060X.2018.1509873
- Habibi, S., & Nematollahi, M. (2019). Position and mass identification in nanotube mass sensor using neural networks. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(15), 5377-5387. https://doi.org/10.1177/0954406219846929
- Izli, N., & Polat, A. (2019). Freeze and convective drying of quince (Cydonia oblonga): Effects on drying kinetics and quality attributes. Heat and Mass Transfer, 55, 1317-1326. https://doi.org/10.1007/s00231-018-02667-6
- Kalathingal, M. S. H., Basak, S., & Mitra, J. (2020). Artificial neural network modeling and genetic algorithm optimization of process parameters in fluidized bed drying of green tea leaves. Journal of Food Process Engineering, 43(1), e13128. https://doi.org/10.1111/jfpe.13128
- Kaveh, M., Abbaspour Gilandeh, Y., Amiri Chayjan, R., & Mohammadigol, R. (2019). Comparison of Mathematical Modeling, Artificial Neural Networks and Fuzzy Logic for Predicting the Moisture Ratio of Garlic and Shallot in a Fluidized Bed Dryer. Journal of Agricultural Machinery, 9(1), 99-112. https://doi.org/10.22067/jam.v9i1.66231
- Kaveh, M., Chayjan, R. A., & Khezri, B. (2018). Modeling drying properties of pistachio nuts, squash and cantaloupe seeds under fixed and fluidized bed using data-driven models and artificial neural networks. International Journal of Food Engineering, 14(1), 10-23. https://doi.org/10.1515/ijfe-2017-0248
- Khalo ahmadi, A., Roustapour, O. R., & Borghaee, A. M. (2022). Design and Construction of a Cabinet Dryer for Food Waste and Evaluation of its Kinetics and Energy Consumption. Journal of Agricultural Machinery, 12(4), 467-480. https://doi.org/10.22067/jam.2021.69918.1037
- Khanlari, A., Güler, H. Ö., Tuncer, A. D., Şirin, C., Bilge, Y. C., Yılmaz, Y., & Güngör, A. (2020). Experimental and numerical study of the effect of integrating plus-shaped perforated baffles to solar air collector in drying application. Renewable energy, 145, 1677-1692. https://doi.org/10.1016/j.renene.2019.06.084
- Lingayat, A., VP, C., & VRK, R. (2021). Drying kinetics of tomato (Solanum lycopersicum) and Brinjal (Solanum melongena) using an indirect type solar dryer and performance parameters of dryer. Heat and Mass Transfer, 57, 853-872. https://doi.org/10.1007/s00231-020-02956-7
- Liu, Z.-L., Bai, J.-W., Wang, S.-X., Meng, J.-S., Wang, H., Yu, X.-L., ..., & Xiao, H.-W. (2019). Prediction of energy and exergy of mushroom slices drying in hot air impingement dryer by artificial neural network. Drying Technology. https://doi.org/10.1080/07373937.2019.1673328
- Matlab, S. (2016). Matlab. The MathWorks, Natick, MA.
- Meerasri, J., & Sothornvit, R. (2022). Artificial neural networks (ANNs) and multiple linear regression (MLR) for prediction of moisture content for coated pineapple cubes. Case Studies in Thermal Engineering, 33, 101942. https://doi.org/10.1016/j.csite.2022.101942
- Merah, O., Sayed-Ahmad, B., Talou, T., Saad, Z., Cerny, M., Grivot, S., ..., & Hijazi, A. (2020). Biochemical composition of cumin seeds, and biorefining study. Biomolecules, 10(7), 1054. https://doi.org/10.3390/biom10071054
- Miraei Ashtiani, S.-H., Rafiee, M., Mohebi Morad, M., Khojastehpour, M., Khani, M. R., Rohani, A., ..., & Martynenko, A. (2020). Impact of gliding arc plasma pretreatment on drying efficiency and physicochemical properties of grape. Innovative Food Science & Emerging Technologies, 63, 102381. https://doi.org/10.1016/j.ifset.2020.102381
- Moghimi, M., Farzaneh, V., & Bakhshabadi, H. (2018). The effect of ultrasound pretreatment on some selected physicochemical properties of black cumin (Nigella Sativa). Nutrire, 43(1), 1-8. https://doi.org/10.1186/s41110-018-0057-4
- Moosavi, A. A., Nematollahi, M. A., & Rahimi, M. (2021). Predicting water sorptivity coefficient in calcareous soils using a wavelet–neural network hybrid modeling approach. Environmental Earth Sciences, 80, 1-19. https://doi.org/10.1007/s12665-021-09399-2
- Moradi, M., Ghasemi, J., & Azimi-Nejadian, H. (2021). Energy and Exergy Analysis of Drying Process of Lemon Verbena Leaves in a Solar Dryer. Journal of Agricultural Machinery, 11(2), 423-433. https://doi.org/10.22067/jam.v11i2.85801
- Namjoo, M., Dibagar, N., Golbakhshi, H., Figiel, A., & Masztalerz, K. (2024). RSM-Based Optimization Analysis for Cold Plasma and Ultrasound-Assisted Drying of Caraway Seed. Foods, 13(19), 3084. Retrieved from: https://www.mdpi.com/2304-8158/13/19/3084
- Namjoo, M., Golbakhshi, H., Kamandar, M. R., & Beigi, M. (2024). Multi-Objective Investigation and Optimization of Paddy Processing in a Hot Air Dryer. Periodica Polytechnica Chemical Engineering. https://doi.org/10.3311/PPch.24100
- Namjoo, M., Moradi, M., Dibagar, N., & Niakousari, M. (2022). Cold plasma pretreatment prior to ultrasound-assisted air drying of cumin seeds. Food and Bioprocess Technology, 15(9), 2065-2083. https://doi.org/10.1007/s11947-022-02863-8
- Namjoo, M., Moradi, M., Niakousari, M., & Karparvarfard, S. H. (2022). Ultrasound-assisted air drying of cumin seeds: modeling and optimization by response surface method. Heat and Mass Transfer. https://doi.org/10.1007/s00231-022-03306-y
- Nazghelichi, T., Kianmehr, M. H., & Aghbashlo, M. (2010). Thermodynamic analysis of fluidized bed drying of carrot cubes. Energy, 35(12), 4679-4684. https://doi.org/10.1016/j.energy.2010.08.028
- Nematollahi, M. A., Jamali, B., & Hosseini, M. (2020). Fluid velocity and mass ratio identification of piezoelectric nanotube conveying fluid using inverse analysis. Acta Mechanica, 231(2), 683-700. https://doi.org/10.1007/s00707-019-02633-5
- Nematollahi, M. A., & Mousavi Khaneghah, A. (2019). Neural network prediction of friction coefficients of rosemary leaves. Journal of Food Process Engineering, 42(6), e13211. https://doi.org/10.1111/jfpe.13211
- Onwude, D. I., Hashim, N., Abdan, K., Janius, R., & Chen, G. (2018). Investigating the influence of novel drying methods on sweet potato (Ipomoea batatas): Kinetics, energy consumption, color, and microstructure. Journal of Food Process Engineering, 41(4), e12686. https://doi.org/10.1111/jfpe.12686
- Osloob, F., Moradi, M., & Niakousari, M. (2023). Cold Plasma: A Novel Pretreatment Method for Drying Canola Seeds: Kinetics Study and Superposition Modeling. Journal of Agricultural Machinery, 13(1), 41-53. https://doi.org/10.22067/jam.2022.75630.1096
- Özkan Karabacak, A. (2019). Effects of different drying methods on drying characteristics, colour and in-vitro bioaccessibility of phenolics and antioxidant capacity of blackthorn pestil (leather). Heat and Mass Transfer, 55, 2739-2750. https://doi.org/10.1007/s00231-019-02729-w
- Potisate, Y., Phoungchandang, S., & Kerr, W. L. (2014). The effects of predrying treatments and different drying methods on phytochemical compound retention and drying characteristics of Moringa leaves (Moringa oleifera). Drying Technology, 32(16), 1970-1985. https://doi.org/10.1080/07373937.2014.945223
- Rezaei, S., Behroozi-Khazaei, N., & Darvishi, H. (2021). Modeling of Potato Slice Drying Process in a Microwave Dryer using Artificial Neural Network and Machine Vision. Journal of Agricultural Machinery, 11(2), 263-275. https://doi.org/10.22067/jam.v11i2.78709
- Saeidirad, M. H., Rohani, A., & Zarifneshat, S. (2013). Predictions of viscoelastic behavior of pomegranate using artificial neural network and Maxwell model. Computers and Electronics in Agriculture, 98, 1-7. https://doi.org/10.1016/j.compag.2013.07.011
- Safavi, A. A., & Romagnoli, J. A. (1997). Application of wavelet-based neural networks to the modelling and optimisation of an experimental distillation column. Engineering Applications of Artificial Intelligence, 10(3), 301-313. https://doi.org/10.1016/S0952-1976(97)00009-2
- Saiedirad, M., & Mirsalehi, M. (2010). Prediction of mechanical properties of cumin seed using artificial neural networks. Journal of Texture studies, 41(1), 34-48. https://doi.org/10.1111/j.2042-4588.2009.00119.x
- Saiedirad, M., Tabatabaeefar, A., Borghei, A., Mirsalehi, M., Badii, F., & Varnamkhasti, M. G. (2008). Effects of moisture content, seed size, loading rate and seed orientation on force and energy required for fracturing cumin seed (Cuminum cyminum) under quasi-static loading. Journal of food engineering, 86(4), 565-572. https://doi.org/10.1016/j.jfoodeng.2007.11.048
- Shashikanthalu, S. P., Ramireddy, L., & Radhakrishnan, M. (2020). Stimulation of the germination and seedling growth of Cuminum cyminum L. seeds by cold plasma. Journal of Applied Research on Medicinal and Aromatic Plants, 18, 100259. https://doi.org/10.1016/j.jarmap.2020.100259
- Sun, Q., Zhang, M., & Mujumdar, A. S. (2019). Recent developments of artificial intelligence in drying of fresh food: A review. Critical Reviews in Food Science and Nutrition, 59(14), 2258-2275. https://doi.org/10.1080/10408398.2018.1487171
- Tabibian, S. A., Labbafi, M., Askari, G. H., Rezaeinezhad, A. R., & Ghomi, H. (2020). Effect of gliding arc discharge plasma pretreatment on drying kinetic, energy consumption and physico-chemical properties of saffron. Journal of food engineering, 270, 109-117. https://doi.org/10.1016/j.jfoodeng.2019.109766
- Wang, C., Tian, S., & An, X. (2022). The effects of drying parameters on drying characteristics, colorimetric differences, antioxidant components of sliced chinese jujube. Heat and Mass Transfer, 58(9), 1561-1571. https://doi.org/10.1007/s00231-022-03202-5
- Wang, X., Zhong, J., Han, M., Li, F., Fan, X., & Liu, Y. (2023). Drying characteristics and moisture migration of ultrasound enhanced heat pump drying on carrot. Heat and Mass Transfer, 1-12. https://doi.org/10.1007/s00231-023-03564-1
- Yogendrasasidhar, D., & Setty, Y. P. (2018). Drying kinetics, exergy and energy analyses of Kodo millet grains and Fenugreek seeds using wall heated fluidized bed dryer. Energy, 151, 799-811. https://doi.org/10.1016/j.energy.2018.03.104
- Zakeri, V., Naghavi, V., & Safavi, A. A. (2009). Developing real-time wave-net models for non-linear time-varying experimental processes. Computers & Chemical Engineering, 33(8), 1379-1385. https://doi.org/10.1016/j.compchemeng.2009.01.017
- Zhou, Y.-H., Vidyarthi, S. K., Zhong, C.-S., Zheng, Z.-A., An, Y., Wang, J., ..., & Xiao, H.-W. (2020). Cold plasma enhances drying and color, rehydration ratio and polyphenols of wolfberry via microstructure and ultrastructure alteration. LWT, 134, 110173. https://doi.org/10.1016/j.lwt.2020.110173
Send comment about this article