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Abstract 

Optimal use of resources, including energy, is one of the most important principles in modern and sustainable 
agricultural systems. Exergy analysis and life cycle assessment were used to study the efficient use of inputs, 
energy consumption reduction, and various environmental effects in the corn production system in Lorestan 
province, Iran. The required data were collected from farmers in Lorestan province using random sampling. The 
Cobb-Douglas equation and data envelopment analysis were utilized for modeling and optimizing cumulative 
energy and exergy consumption (CEnC and CExC) and devising strategies to mitigate the environmental impacts 
of corn production. The Cobb-Douglas equation results revealed that electricity, diesel fuel, and N-fertilizer were 
the major contributors to CExC in the corn production system. According to the Data Envelopment Analysis 
(DEA) results, the average efficiency of all farms in terms of CExC was 94.7% in the CCR model and 97.8% in 
the BCC model. Furthermore, the results indicated that there was excessive consumption of inputs, particularly 
potassium and phosphate fertilizers. By adopting more suitable methods based on DEA of efficient farmers, it 
was possible to save 6.47, 10.42, 7.40, 13.32, 31.29, 3.25, and 6.78% in the exergy consumption of diesel fuel, 
electricity, machinery, chemical fertilizers, biocides, seeds, and irrigation, respectively. 
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Introduction1 

The agriculture sector has become 
increasingly reliant on energy due to the 
widespread use of agricultural machinery and 
inputs in mechanized agriculture, particularly 
in developing countries where there has been a 
shift from traditional to mechanized farming 
methods. Mechanization is the main factor in 
the consumption of non-renewable energy in 
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agriculture (Leiva & Morris, 2001). In addition 
to reducing non-renewable resources, this 
situation has also had adverse effects on the 
environment (Nemecek, Dubois, Huguenin-
Elie, & Gaillard, 2011; Nikkhah, 
Khojastehpour, Emadi, Taheri-Rad, & 
Khorramdel, 2015). Since the agricultural 
sector, on the other hand, is responsible for the 
food security of the growing population, a 
balance must be struck between the use of 
resources and the production of agricultural 
products (Alam, Alam, & Islam, 2005). The 
consumption of resources should be such that 
it does not threaten the food security of future 
generations (Alam et al., 2005). 
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Increasing agricultural productivity is not 
possible without the proper, wise, and timely 
use of inputs. Using more inputs, whether 
directly or indirectly, leads to a rise in energy 
consumption. Therefore, to determine effective 
methods for the optimal use of agricultural 
inputs, it is necessary to first identify them 
accurately and comprehensively (Mani, 
Kumar, Panwar, & Kant, 2007). Energy is one 
of the most important resources in agricultural 
activities and due to the limited resources, 
greenhouse gas emissions, and possible 
harmful effects on the environment, it should 
be used optimally and effectively (Alam et al., 
2005). On the other hand, the scarcity of 
natural resources and the impact of intensive 
agriculture on the environment raise concerns 
about the ecological sustainability of 
agriculture. A careful equilibrium must be 
established between energy usage and its 
availability in the agricultural sector (Leiva & 
Morris, 2001). 

Today, achieving sustainability in 
agricultural production systems is one of the 
main policies in the agricultural sector, with 
the aim of increasing productivity and 
reducing adverse effects on the environment. 
Sustainability in agriculture is achieved when 
the food needs of the present population is met 
without threatening the food security of future 
generations. This type of agriculture 
emphasizes the protection of the environment 
and natural resources, and the optimal use of 
non-renewable resources. To evaluate possible 
practical measures and promote agricultural 
sustainability, it is critical to identify the actual 
flow of various inputs and outputs in 
agricultural production systems. The optimal 
use of inputs is one of the principles of 
sustainable agricultural systems (Ahamed et 
al., 2011). This situation is even more 
necessary in the case of energy as one of the 
most important agricultural inputs, especially 
in developing countries that are highly 
dependent on non-renewable resources 
(Apazhev et al., 2019; Jat et al., 2020; Parihar 
et al., 2018; Shah et al., 2021). Therefore, 
identifying optimal patterns of energy 
consumption in agriculture is necessary and 

can develop sustainable agriculture as an 
economic production system (Hatirli, Ozkan, 
& Fert, 2005). The evaluation of the flow of 
energy consumption in the production system 
of agricultural products is the basis of energy 
analysis. The main goals of energy analysis are 
to reduce energy consumption, identify non-
renewable energy sources for replacement 
with renewable sources, reduce production 
costs, and use environmentally friendly 
production methods as part of an optimal 
management system (Gezer, Acaroǧlu, & 
Haciseferoǧullari, 2003).  

Production in agriculture is always 
associated with the main goal of increasing 
yield and reducing costs (Gezer et al., 2003). 
Therefore, optimal energy consumption 
requires comprehensive planning in this 
regard. Optimization is a process in which the 
greatest benefit is obtained by changing the 
input or output values of a system 
(Thankappan, Midmore, & Jenkins, 2006). 
Optimization of energy consumption in 
agriculture is possible by increasing 
productivity and maintaining the level of 
energy input or saving energy consumption 
without reducing productivity (Bhunia et al., 
2021; Vlontzos, Niavis, & Manos, 2014). A lot 
of research has been done on the optimization 
of agricultural systems from different 
perspectives. Optimizing energy consumption 
is one of these perspectives in which the 
highest performance with the lowest amount of 
input energy is desired (Thankappan et al., 
2006). However, this approach considers the 
analysis and amount of energy consumed 
based on the first law of thermodynamics 
without considering the quality of energy 
consumed and does not clearly show the loss 
of energy in energy conversion processes 
(Sartor & Dewallef, 2017). For this reason, in 
recent years, exergy analysis methods that 
measure the quantity and quality of energy and 
material flow based on common units have 
been used (Juárez-Hernández, Usón, & Pardo, 
2019). Exergy is the maximum useful work 
that can be obtained from the system during 
a process that brings 
the system into thermodynamic equilibrium 
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with its environment (Juárez-Hernández et al., 
2019). Exergy analysis, based on the principles 
of mass and energy conservation and the 
second law of thermodynamics, is more useful 
than energy analysis in determining system 
efficiency. This procedure provides a useful 
tool to examine the impact of the use of energy 
resources on the environment (Ahamed et al., 
2011). In previous studies, exergy analysis, 
cumulative degree of perfection (CDP) and 
renewability index (RI) were used to evaluate 
the effects of agricultural production systems 
on the environment (KhojastehpourTroujeni, 
Esmailpour, Vahedi, & Emadi, 2018; 
Yildizhan & Taki, 2018). It also determines 
the location, types, and magnitude of actual 
exergy losses (Dincer & Cengel, 2001; 
Yildizhan, 2018). Exergy is a thermodynamic 
balance indicator and a unified scale for 
evaluating different forms of energy carriers 
and materials, which is suitable for evaluating 
the sustainability of various production 
processes and systems (Bösch, Hellweg, 
Frischknecht, & Huijbregts, 2007; Juárez-
Hernández et al., 2019). Several researchers 

have used the exergy analysis to better 
understand the efficiency and sustainability of 
the agricultural production system (Al-
Ghandoor & Jaber, 2009; Amiri, Asgharipour, 
Campbell, & Armin, 2020; 
EsmaeilpourTroujeni, Rohani, & 
Khojastehpour, 2021; Juárez-Hernández et al., 
2019; Ordikhani, Parashkoohi, Zamani, & 
Ghahderijani, 2021; Pelvan & Özilgen, 2017; 
Shahhoseini, Ramroudi, Kazemi, & Amiri, 
2021; Yildizhan & Taki, 2018). Saving 
cumulative exergy consumption (CExC) in 
agricultural production means less 
consumption of energy and natural resources 
and less pollution (Yildizhan, 2018). 

Energy consumption in Iran's agricultural 
sector has almost doubled from 2001 to 2018, 
mainly due to the increase in the use of 
agricultural machinery, chemical and mineral 
materials, and irrigation, as well as the 
increase in cultivated area, reaching 58.1 
million barrels of crude oil equivalent. The 
sources of this energy are mainly non-
renewable (diesel and fossil-based electricity). 

Accordingly, the agricultural sector in Iran is 
one of the most important sectors in the 
emission of pollutants in the environment (for 
example, more than one-third of N2O 
emissions in Iran) (Anonymous, 2018). 
Studies have shown that increasing the use of 
energy and inputs in agriculture may increase 
yield, but reduce energy efficiency and 
exacerbate some of the harmful effects of 
agricultural systems on the environment 
(Mohammadi et al., 2013). Therefore, 
increasing the efficiency of energy 
consumption in agricultural production 
systems is very effective to achieve sustainable 
agriculture. There are various techniques to 
optimize energy consumption in production 
units and systems. Data Envelopment Analysis 
(DEA) is a linear programming method that 
constructs the efficiency frontier by using the 
information of production units as the 
decision-making unit and determines the 
degree of inefficiency of each decision-making 
unit based on the distance of that unit to the 
efficient frontier. DEA has been widely used 
to measure the efficiency of agricultural 
production in terms of energy and to determine 
the optimal amount of input consumption 
(Bhunia et al., 2021; Kaab, Sharifi, Mobli, 
Nabavi-Pelesaraei, & Chau, 2019; Powar et 
al., 2020; Gurdeep Singh, Sodhi, & Tiwari, 
2021; Vlontzos et al., 2014).  

Several studies have analyzed energy 
consumption in corn production, mostly based 
on the first law of thermodynamics (Banaeian 
& Zangeneh, 2011; Komleh Pishgar, Keyhani, 
Rafiee, & Sefeedpary, 2011; Mani et al., 2007; 
Su, Shao, Tian, Li, & Huang, 2021; Yousefi, 
Khoramivafa, & Mondani, 2014). In this 
study, optimization of inputs consumption, 
reduction of energy consumption, and 
reduction of various environmental effects of 
the corn production system are investigated 
based on exergy analysis and life cycle 
assessment of corn production. The DEA 
method was used to determine the optimal 
amount of input consumption based on the 
CExC and to minimize the environmental 
effects of corn production while maintaining 
the current level of performance. 
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Materials and Methods 

The general steps and the boundary of the 
studied system are shown in Fig. 1. In the first 
step, the analysis of exergy and energy in corn 
production system was performed based on 
CExC, cumulative energy consumption 
(CEnC), and exergy and energy evaluation 
indicators. Finally, the CExC was modeled 

using the Cobb-Douglas model. In the next 
step, DEA was used to measure the efficiency 
of inputs used in each farm (production unit) 
in terms of CExC and to determine the 
effective consumption of inputs and CExC in 
corn farms. The Life Cycle Analysis (LCA) of 
the corn production system was investigated in 
the final step. 

 

 
Fig. 1. System boundary and general stages of the study 

 

Data and studied area 

The required data were collected from corn 
farmers in Lorestan province, Iran. About 780 
thousand hectares of the province's area are 
agricultural lands, and it is one of the most 
important corn production areas in Iran. A 
total of 214 farmers were randomly selected 
(Equation (1), (William G. Cochran, 1991)) to 
interview and collect the necessary data. 

(1) 
222

22
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n


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Where: 
n – The sample size 
N – The size of the statistical population 

(total corn farmers in the province) 

t – The reliability coefficient (1.96 which 
represents the 95% confidence interval) and 
the permissible error in the sample size was 
defined to be 5% for 95% confidence level 

d – The precision where (x – X) or mid-
confidence interval 

S2 – the variance of the surveyed factor of 
the population 

For exergy analysis, all materials and input 
energy carriers were quantified based on 
energy and exergy coefficients. Diesel fuel, 
electricity, human power, chemical fertilizers, 
biocides, machinery and tools, irrigation, 
seeds, and infrastructure (such as irrigation 
canals) are considered inputs that demand 
energy or cost at various stages of land 



Soleymani et al., Optimization of Cumulative Energy, Exergy Consumption and Environmental …     27 

preparation, planting, harvesting, and 
transportation. 
Energy and exergy analysis 

CExC and CEnC are the sums of total 
exergy and energy used in all processes 
required to produce a product, respectively. 
Therefore, CEnC and CExC were calculated in 
corn production by considering all categories 
of inputs and energy carriers. CEnC and CExC 
in the production of agricultural products are 
divided into renewable and non-renewable, 
direct and indirect. Diesel and electricity, 
which are direct carriers of energy, are direct 
components of CEnC and CExC in agricultural 
systems, and the rest of the inputs are of 
indirect types. On the other hand, agricultural 

machinery, diesel fuel, chemical fertilizers, 
biocides and electricity (which is mainly 
fossil-based in Iran) are non-renewable 
components of CEnC and CExC in corn 
production. Table 1 shows the specific 
equivalents of CEnC and CExC extracted from 
relevant references. These values for each 
input are obtained using work and heat 
interaction processes (EsmaeilpourTroujeni et 
al., 2021; Yildizhan, 2018). Only inputs for 
which cost or energy are used were considered 
in this study, and other inputs and energies 
such as solar energy, energy received from air 
and soil, and microorganisms were excluded. 

 
Table 1- CEnC and CExC equivalents of inputs and outputs in corn production system  

 Items 
Specific CEnC Specific CExC 

Quantity Reference Quantity Reference 

Input 

Diesel fuel 56.3 MJ lit-1 
(Erdal, Esengün, Erdal, & 

Gündüz, 2007) 
53.2 MJ lit-1 

(KhojastehpourTroujeni et al., 2018; Yildizhan, 

2018)  

Electricity 12 MJ kWh-1 (Ordikhani et al., 2021) 
4.17 MJ 

kWh-1 
(Amiri et al., 2020) 

Nitrogen fertilizer 

(N) 

76.14 MJ kg-

1 

(Yilmaz, Akcaoz, & 

Ozkan, 2005) 
32.7 MJ kg-1 (Amiri et al., 2020) 

Phosphate 

fertilizer (P2O5) 
12.4 MJ kg-1 (Yilmaz et al., 2005) 7.52 MJ kg-1 

(Amiri et al., 2020; EsmaeilpourTroujeni et al., 

2021) 

Potassium 

fertilizer (K2O) 

11.15 MJ kg-

1 
(Ordikhani et al., 2021) 4.7 MJ kg-1 (Pelvan & Özilgen, 2017) 

Herbicides 120 MJ lit-1 
(Beheshti Tabar, Keyhani, 

& Rafiee, 2010) 
32.7 MJ lit-1 (EsmaeilpourTroujeni et al., 2021) 

Pesticides 
363.6 MJ lit-

1 
(Kaab et al., 2019) 7.52 MJ lit-1 (Yildizhan & Taki, 2018) 

Fungicides 198 MJ lit-1 (Yildizhan & Taki, 2018) 4.56 MJ lit-1 (Yildizhan & Taki, 2018) 

Machinery 
9 MJ kg-1 

year-1 
(Kaab et al., 2019) 7.1 MJ kg-1 

(Michalakakis, Fouillou, Lupton, Gonzalez 

Hernandez, & Cullen, 2021) 

Irrigation 
0.00102 MJ 

kg-1 
(Yildizhan & Taki, 2018) 

0.00425 MJ 

kg-1 
(Amiri et al., 2020) 

Human labor 1.96 MJ h-1 (Kaab et al., 2019) -  

Corn seed 100 MJ kg-1 (Kitani, 1999) 21.7 MJ kg-1 (Juárez-Hernández et al., 2019) 

Output Corn grain 18.3 MJ kg-1 (Ptasinski, 2016) 21.7 MJ kg-1 (Juárez-Hernández et al., 2019) 

 
One of the important indicators in 

evaluating energy consumption in the 
production of agricultural products is the ratio 
of output CEnC to input CEnC, ER (Equation 
(2)). This index is considered as a criterion for 
measuring energy usage efficiency in 
agricultural production systems (Yuan, Peng, 
Wang, & Man, 2018). The higher the index, 
the higher the efficiency of energy use 
(Ordikhani et al., 2021). A value greater than 1 
for this index indicates that the energy output 

of the production system is greater than CEnC 
(Banaeian & Zangeneh, 2011; Bhunia et al., 
2021; Mobtaker, Keyhani, Mohammadi, 
Rafiee, & Akram, 2010; Mousavi-Avval, 
Rafiee, Jafari, & Mohammadi, 2011b; Royan, 
Khojastehpour, Emadi, & Mobtaker, 2012; 
Gurdeep Singh et al., 2021; Vlontzos et al., 
2014). Since only inputs for which energy or 
cost have been spent are considered, the value 
of this index can be higher than 1. Other 
important indicators that are used in the 
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evaluation of energy consumption in 
agricultural systems include Energy Intensity 
(EI), Energy Productivity (EP), and Net 
Energy Gained (NEG), which are calculated 
using Equations (3), (4), and (5), respectively 
(Kaab et al., 2019; Ordikhani et al., 2021). EI 
and EP are the two contrasting indicators. EI 
shows the amount of CEnC used to produce 
one unit of product, which is mostly used in 
the perspective of industrial agriculture, while 
EP shows the amount of product per unit of 
CEnC, and is mostly used to compare the 
production system of different agricultural 
products. The higher the EP and the lower the 
EI, the more efficient the agricultural 
production process is in terms of energy 
consumption. NEG is equal to the output 
energy minus CEnC. When NEG is greater 
than zero, more energy has been produced than 
consumed. The higher this index is, the more 
efficient the production system is. A 
comprehensive study of all these indicators 
(ER, EP, and EI) is useful to compare and 
show the potential environmental impacts of 
agricultural production systems (Khan et al., 
2009). 

 
𝐸𝑛𝑒𝑟𝑔𝑦 𝑟𝑎𝑡𝑖𝑜 (𝐸𝑅)  

=
𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑 (𝑀𝐽 ℎ𝑎−1)

Input CEnC (𝑀𝐽 ℎ𝑎−1)
 

(2) 

Energy intensity (𝐸𝐼)

=
Input CEnC (𝑀𝐽 ℎ𝑎−1)

𝑌𝑖𝑒𝑙𝑑 (𝑘𝑔 ℎ𝑎−1)
 

(3) 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝐸𝑃)

=
𝑌𝑖𝑒𝑙𝑑 (𝑘𝑔 ℎ𝑎−1)

Input CEnC (𝑀𝐽 ℎ𝑎−1)
 

(4) 

Cumulative net energy gain(𝐶𝑁𝐸𝑛𝐺)
=  𝑂𝑢𝑡𝑝𝑢𝑡 CEnC (𝑀𝐽 ℎ𝑎−1)
− 𝐼𝑛𝑝𝑢𝑡 CEnC (𝑀𝐽 ℎ𝑎−1) 

(5) 

 
In the current study, the cumulative exergy 

approach and obtained Cumulative Degree of 
Perfection (CDP), as well as renewability 
index were used to evaluate the renewability 
and sustainability of corn production processes 
and the efficiency of exergy consumption 
(Ahamed et al., 2011; EsmaeilpourTroujeni et 
al., 2021). The RI is the ratio of renewable 
resources to non-renewable resources. A 

higher value of RI means that the production 
system produces in a more renewable way 
(Hai et al., 2023). In the calculation of exergy 
efficiency, all controllable and uncontrollable 
inputs are considered, while in CDP, only the 
controllable inputs are considered 
(EsmaeilpourTroujeni et al., 2021). Since only 
controllable inputs are usually considered in 
agricultural systems, CDP is preferable. CDP 
is equal to the ratio of exergy obtained from 
the agricultural production system to the CExC 
of controllable inputs in the agricultural 
production system (Equation (6), (Ahamed et 
al., 2011; EsmaeilpourTroujeni et al., 2021)). 
Since in agricultural production systems, the 
produced crops are in equilibrium with the 
environment, the exergy of the crops is 
considered equal to their chemical exergy 
(KhojastehpourTroujeni et al., 2018; 
Yildizhan, 2018). This index, together with the 
RI, provides a powerful tool for evaluating and 
comparing the harmful effects of production 
processes on the environment and is used as an 
index to monitor the level of environmental 
sustainability of the processes 
(EsmaeilpourTroujeni et al., 2021). 

 
CDP

=
Exergy in products ((m × b)products)

∑(𝑚 × 𝐶𝐸𝑥𝐶)𝑟𝑎𝑤 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠 + ∑(𝑚 × 𝐶𝐸𝑥𝐶)𝑓𝑢𝑒𝑙𝑠  
 (6) 

 
Where, m represents mass, and b represents 

chemical exergy 
The Renewability Index (RI) is used to 

determine the renewability of processes, 
evaluate the intensity of resource stress, and 
analyze the environmental impact of a 
production system. This index, which is 
obtained based on Equation (7) 
(KhojastehpourTroujeni et al., 2018; Pelvan & 
Özilgen, 2017; Yildizhan & Taki, 2018), 
shows the 4 states of processes in terms of 
renewability. The negative value of this index 
indicates that the process is completely non-
renewable, and the zero value indicates that 
the restoration work is equal to the amount of 
exergy produced in the system. Process 
renewability increases from zero until it 
reaches its highest value of 1, which represents 
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a fully renewable process. In general, the 
higher the value of this index for a system, the 
lower its harmful effects on the environment 
(KhojastehpourTroujeni et al., 2018; Yildizhan 
& Taki, 2018). 

𝑅𝐼 =
𝐸𝑐ℎ − 𝑊𝑟

𝐸𝑐ℎ
 (7) 

Where, Ech and Wr represent the chemical 
exergy of final products and restoration work, 
respectively.  

Excessive exploitation of resources, 
especially non-renewable ones, can have 
harmful effects on the environment. In some 
cases when the effect is insignificant, nature 
can tolerate it and neutralize the risks caused 
by it. In the processing of resources, non-
renewable energy sources are destroyed and 
restoring them to their initial states requires 
work (Berthiaume, Bouchard, & Rosen., 
2001). This restoration work (Wr) is estimated 
by summing the net exergy consumption in the 
process and the net exergy consumption for 
waste treatment. In an agricultural crop 
production process, the exergy of all 
consumed non-renewable resources is 
calculated to estimate the restoration work 
(EsmaeilpourTroujeni et al., 2021; Pelvan & 
Özilgen, 2017; Yildizhan & Taki, 2018, 2019). 
Regression modeling 

Regression analysis is a statistical method 
in which the relationship between two or more 
quantitative variables is used to predict a 
variable with the help of another variable or 
variables. In this study, regression method was 
used to investigate the relationship between 
energy consumption and cumulative exergy, 
and crop yield. For this purpose, the Cobb-
Douglas function was chosen due to its 
simplicity, compatibility with physical logic, 
and generalization power. This function has 
been widely used in energy research (Banaeian 
& Zangeneh, 2011; Bhunia et al., 2021; 
Mobtaker et al., 2010; Mousavi-Avval et al., 
2011b; Royan et al., 2012; Gurdeep Singh et 
al., 2021; Vlontzos et al., 2014). The best 
statistically significant estimates and the 
expected signs of the parameters are obtained 
from this function, which is expressed as 
Equations (8) and (9) (Mobtaker et al., 2010). 

(8) Y = f(x)exp (u) 

(9) 𝐿𝑛𝑌𝑖 = 𝑎 + ∑ ∝𝐽 𝑙𝑛𝑋𝑖𝑗 + 𝑒𝑖

𝑛

𝑗=1

 

where, Y is the corn yield, X is the energy 
and exergy inputs used in the production 
processes, α is the coefficient of energy and 
exergy inputs, e is the error coefficient, and a 
is a constant value. 

To change the inputs and their effects on 
the output, the returns to scale index was used. 
This index shows how much the output value 
changes for each unit increase in all input 
consumption. The sum of the regression 
coefficients obtained in the Cobb-Douglas 
equation indicates the returns to scale index; a 
value greater than 1 indicates increasing 
returns to scale, a value less than 1 signifies 
decreasing returns to scale, and a value equal 
to 1 denotes constant returns to scale 
(Mobtaker et al., 2010). 
Life Cycle Assessment (LCA) 

LCA is a standard and widely used 
environmental assessment method for 
evaluating processes, products, and services. 
LCA is an analytical tool that assesses the 
environmental burden and impacts related to 
the entire life cycle of a product or process 
(extraction and processing of raw materials, 
manufacturing, distribution and use, and 
recycling or final disposal of all residuals of 
main and by-products). LCA is a "cradle to 
grave" approach to assess all inputs, outputs, 
and wastes of a product, process, or service, 
and their impacts on human health and the 
environment, and finally, interpret the 
assessment results throughout the entire life 
cycle (Ordikhani et al., 2021; Prasad et al., 
2020). This method serves as an effective 

approach for assessing the impact of a process 
on various categories of environmental effects 
and assists managers in promoting the 
development of products with minimal adverse 
environmental impacts (Kaab et al., 2019). A 
complete LCA is performed in four steps: 1- 
goal and scope definition, 2- life cycle 
inventory (LCI), 3- life  cycle impact 
assessment (LCIA), and 4- interpretation of 
results (Prasad et al., 2020). The purpose of 
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the life cycle assessment in this study was to 
examine environmental impact groups per 
kilogram of corn product (as a functional unit). 
The studied impact categories were: 
Acidification (AC), Eutrophication (EP), 
Global Warming Potential (GWP), Ozone 
Layer Depletion (OLD), Human Toxicity 
(HT), Fresh Water Aquatic Ecotoxicity 
(FWAE), Marine Aquatic Ecotoxicity (MAE), 
Terrestrial Ecotoxicity (TE), and 
Photochemical Oxidation (PO). 

In LCI, all the inputs, outputs, wastes, their 
amount, and the probable emissions to the 
environment in the corn production system 
were determined based on the functional unit 
(FU). The main inputs at this stage were diesel 
fuel, electricity, machinery, nitrogen fertilizer, 
phosphate fertilizer, potassium fertilizer, 
biocides, irrigation water, and infrastructures, 
whose environmental impacts were estimated 
based on existing standards (Finkbeiner, Inaba, 
Tan, Christiansen, & Klüppel, 2006). Accurate 
estimation of the amount of pollutants released 
into the soil, water, and air is challenging. 
Therefore, instead of measurement, emission 
factors of pollutants are often used to estimate 
the average emission of pollutants (Tzilivakis, 
Warner, May, Lewis, & Jaggard, 2005). 
Accordingly, the emission factors of pollutants 
caused by the use of inputs in agricultural 
production systems were obtained from 
relevant references (Brentrup, Küsters, 
Lammel, Barraclough, & Kuhlmann, 2004; 
IPCC, 2006; Nikkhah et al., 2015; Ordikhani 
et al., 2021). 

The third stage (LCIA) includes the 
classification and characterization, 
normalization ranking, grouping, and weighting, 
of which the first two are mandatory, and the 
last three are optional. In the classification, 
impact category groups are defined, and then 
the released pollutants audited in the LCI stage 
are placed in the corresponding impact groups 
based on the type of pollutant released. Then, 
the coefficient or weight of each pollutant is 
applied for different impact categories. For 
this purpose, a characteristic factor is 
determined for each type of pollutant in the 
impact groups according to the functioning of 

the ecosystem (Brentrup et al., 2004; A. Singh 
et al., 2010). Finally, in the last stage of LCA, 
interpretation, the results obtained in LCI and 
LCIA are summarized, important issues are 
identified, and recommendations are given 
especially for reducing the harmful effects of 
hazardous pollutants (Arts, Ruijten, Aelst, 
Trullemans, & Sels, 2021; Ashby, 2013; Cao, 
2017; Hernandez, Oregi, Longo, & Cellura, 
2019; Kylili, Seduikyte, & Fokaides, 2018; 
Papapetrou & Kosmadakis, 2022; Prasad et 
al., 2020). In the current study, the CML 
2 baseline 2000 V2.05/universe technique was 
used to perform LCA in the Simapro 8.4.0.0. 
Software. 
Data Envelopment Analysis (DEA) 

DEA is a non-parametric method for 
estimating production functions based on a 
series of optimizations using linear 
programming (Adler, Friedman, & Sinuany-
Stern, 2002). It is a powerful tool in the field 
of improving productivity and calculating the 
efficiency of Decision-Making Units (DMUs). 
This technique was used to evaluate the 
efficiency of farms in energy and exergy 
consumption in corn production, and based on 
this, the efficient amount of energy and exergy 
consumption was determined, while 
maintaining the current production level. In 
this method, DMUs (Adler et al., 2002) can be 
made efficient in an input or output oriented 
manner. In the input-oriented mode, by 
maintaining the output level, the consumption 
of inputs is minimized, and in the output-
oriented mode, by keeping the input values 
constant, the output value and production are 
maximized (Mousavi-Avval, Rafiee, Jafari, & 
Mohammadi, 2011a; Mousavi-Avval et al., 
2011b). The production of agricultural 
products relies on limited and scarce 
resources. Hence, in similar studies, the use of 
input-oriented DEA models has been preferred 
to reduce the inputs used in agricultural 
production systems (Chauhan, Mohapatra, & 
Pandey, 2006; Malana & Malano, 2006; 
Mohammadi et al., 2014; Mousavi-Avval et 
al., 2011a, 2011b). Therefore, in this research, 
the input-oriented method was used and the 
CExC of controllable inputs and corn grain 
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yield were defined as input and output 
variables, respectively. Each farm was 
considered as a DMU and the two models of 
Constant Returns to Scale (CCR) and Variable 
Returns to Scale (BCC), were used as input-
oriented models to calculate efficiency. In the 
constant returns to scale model, with one 
percent change in the input values, the outputs 
also change by one percent (decrease or 
increase), while in the variable returns to scale 
model, with one percent change in the inputs, 
the outputs change with different percentages 
(increase or decrease) (Mousavi-Avval et al., 
2011b; P. Singh, Singh, & Sodhi, 2019). The 
efficiency of using inputs in the CCR model is 
called Technical Efficiency (TE), and in the 
BCC model it is called Pure Technical 
Efficiency (PTE) (Gurdeep Singh et al., 2021). 
Scale efficiency (SE) is calculated by dividing 
the TE by the PTE, and its value is at most 1. 
When SE is 1, it means that the farmer 
produces at the most efficient scale, and the 
TE and PTE of production are equal (Chauhan 
et al., 2006; Malana & Malano, 2006; 
Mohammadi et al., 2014; Mousavi-Avval et 
al., 2011a, 2011b). DEA Solver software was 
used to calculate efficiency and analyze data. 

 

Results and Discussion 

Energy consumption and cumulative exergy 

CEnC and CExC in grain corn production 
systems were calculated to be 68.9 and 29.6 

GJ/ha, respectively. Also, CEnC and CExC for 
the production of one tonne of corn seeds were 
calculated as 6644 and 2854 MJ, respectively. 
The results are comparable with the energy 
consumption for silage corn production in 
Tehran province, Iran, which is 68.93 GJ ha-1 
(Komleh Pishgar et al., 2011). As a result of 
increasing agricultural mechanization and 
chemical use such as fertilizers, energy 
consumption for corn production in Iran is 
increasing and has reached 63.64 GJ ha-1, from 
40.98 GJ ha-1 in 2001 (Banaeian & Zangeneh, 
2011). Electricity, diesel fuel, and nitrogen 
fertilizer have the largest share in CEnC with 
57.58, 10.19, and 12.21%, respectively. In 
similar studies, diesel fuel, chemical fertilizers, 
and electricity used in irrigation have been 
reported as the main energy inputs in corn 
production (Banaeian & Zangeneh, 2011; 
Pishgar-Komleh, Keyhani, Mostofi-Sarkari, & 
Jafari, 2012; Yousefi, Mahdavi, & Mahmud, 
2014). Fig. 2 shows the contribution of inputs 
in energy consumption and cumulative exergy 
of corn production. As can be seen from this 
figure in terms of CExC, electricity, diesel 
fuel, and nitrogen fertilizer are the highest 
exergy input to the system with 46.57, 22.41, 
and 12.21%, respectively.  

 
 
 

 

 
  

Fig. 2. Contribution of inputs in energy consumption and cumulative exergy in corn production 
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Autocorrelation of the data, used to 
estimate the relationship between energy 
inputs and corn yield, using the Cobb-Douglas 
production function, was tested by the Durbin-
Watson statistic (Hatirli et al., 2005; Mobtaker 
et al., 2010). The value of this statistic for the 
model of CEnC and CExC was equal to 1.87 
and 1.73, respectively, which shows that the 
autocorrelation of the data in both models is 
not significant (α= 5%). The regression results 
for the Cobb-Douglas model based on CEnC 
and CExC are shown in Table 2. The value of 
R2 for Cobb-Douglas model estimated based 
on CEnC (model 1) was equal to 0.94, which 
shows that this model has the ability to predict 
and explain 94% of the yield changes by 6 
inputs of electricity, labor, fuel, machinery, 
and phosphorus and nitrogen fertilizers. 
Among the inputs, electrical energy has the 
greatest effect on yield with a coefficient of 
0.578, which means that with an increase of 1 
unit of electricity consumed within the 
model’s data range, corn yield increases by 
about 0.58 units. Phosphorus and nitrogen 
fertilizers are in the next ranks with 
coefficients of 0.242 and 0.228, respectively. 
The negative input coefficients for human 
energy and nitrogen fertilizer indicate that 

increasing the consumption of each megajoule 
of these inputs, based on the analyzed regional 
data, will lead to a decrease in corn yield by 
0.24 units for human energy and 0.06 units for 
nitrogen fertilizer. In agricultural production 
modeling studies, machinery, irrigation 
(electricity), chemical fertilizers, and labor 
were reported as determining inputs in 
modeling and explaining yield changes 
(Hatirli, Ozkan, & Fert, 2006; Mobtaker et al., 
2010). The calculated sum of the coefficients 
for the CEnC-based model reached 
approximately 0.93, indicating that the yield in 
the studied area reflects diminishing returns to 
scale regarding CEnC. Model 2, which was 
obtained based on CExC, shows that about 
94% (R2) of yield changes can be explained by 
changes in 5 inputs of diesel fuel, electricity, 
nitrogen fertilizer, phosphate fertilizer, and 
biocides. Exergy consumption of inputs of 
fuel, electricity, and phosphorus fertilizer, 
respectively, has the greatest impact on corn 
production yield. The exergy of nitrogen 
fertilizer in this model has a negative 
coefficient, and it shows that the yield will 
decrease with the increase of exergy input of 
nitrogen fertilizer. 

 
Table 2- Estimated coefficients of corn production function based on Cobb-Douglas function 

Independent variables Coefficient (α) Sig 

Model 1 (CEnC): ln Y𝑖 = 𝑎0 + 𝑎1𝑙𝑛𝑋1𝑖 + 𝑎2𝑙𝑛𝑋2𝑖 + 𝑎3𝑙𝑛𝑋3𝑖 + 𝑎4𝑙𝑛𝑋4𝑖 + 𝑎5𝑙𝑛𝑋5𝑖 + 𝑎6𝑙𝑛𝑋6𝑖 + 𝑒𝑖 
Constant 0.737 0.037 

Electricity 0.578 0.000 

Phosphate fertilizer 0.242 0.000 
Fuel 0.185 0.015 

Labor -0.242 0.000 

Machinery 0.228 0.001 
Nitrogen fertilizer -0.065 0.009 

Durbin–Watson 1.87  

R2 0.941  

Returns to scale 0.926  

Model 2 (CExC): ln Y𝑖 = 𝑎1𝑙𝑛𝑋1𝑖 + 𝑎2𝑙𝑛𝑋2𝑖 + 𝑎3𝑙𝑛𝑋3𝑖 + 𝑎4𝑙𝑛𝑋4𝑖 + 𝑎5𝑙𝑛𝑋5𝑖 + 𝑒𝑖 
Fuel 0.469 0.000 

Electricity 0.403 0.000 

Nitrogen fertilizer -0.103 0.000 

Phosphate fertilizer 0.284 0.000 

Pesticides 0.007 0.001 

Durbin–Watson 1.73  

R2 0.938  

Returns to scale 1.06  
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Investigating the efficiency of corn production 

To optimize the corn production system and 
determine efficient and inefficient fields based 
on input and output exergy values using the 
DEA method, all 214 farms were considered 
as DMUs, and the input-output exergy for all 
farms was analyzed based on input-oriented 
constant returns to scale (CCR-I) and input-
oriented variable returns to scale (BCC-I) 
models. The efficiency results of corn 
production fields in terms of CExC based on 
CCR-I and BCC-I models are shown in Table 
3. In terms of CExC in the CCR model, about 
57% of corn production farms are technically 
inefficient, and 92 of the 214 surveyed farmers 
are technically efficient in this model, which 
shows that the activity of these farmers is 
constant returns to scale, and operate at the 
optimal scale of performance. The average 
efficiency of all farms in the CCR model is 
94.7% and the most inefficient farm has a 
technical efficiency of 74.3%. The obtained 
efficiency values show that many of the farms 
in the studied area are significantly inefficient 
in terms of exergy consumption and do not use 
inputs correctly and efficiently or do not use 
the appropriate production methods. In the 
BCC model, the average efficiency is 97.8%, 
and 51.87% of farms have pure technical 
efficiency. Nearly all inefficient farms 

experience diminishing returns to scale, 
meaning that each additional unit of exergy 
input results in less than a one-unit increase in 
exergy output. Therefore, increasing the use of 
inputs does not increase exergy efficiency, and 
in the current method of corn production, 
inputs are used more than the optimal amount. 
Understanding the returns to scale associated 
with redistributing inputs among farms can 
significantly enhance performance outcomes 
(Chauhan et al., 2006; Mousavi-Avval et al., 
2011a). The SE of farms was 0.968. The units 
were ranked based on the efficiency values 
obtained, so that the higher the efficiency 
value, the higher the farm ranked. One of the 
valid methods for ranking the efficient units is 
the benchmarking method, in which an 
efficient unit is ranked highly if it appears 
frequently in the reference sets of inefficient 
DMUs. The information of these DMUs can 
be used to determine the amounts of inputs 
used in inefficient units (Adler et al., 2002; 
Mousavi-Avval et al., 2011a). In this study, 
the 10 efficient farms with the highest values 
were DMUs No. 5, 74, 60, 50, 214, 12, 111, 8, 
152, and 22, which appeared 55, 53, 39, 37, 
36, 23, 20, 20, 19, and 18 times, in the CCR 
model reference set, respectively. 

Table 3- The overall results of the input-oriented DEA method for CExC 

Model Average 

efficiency 
The lowest 

efficiency 
Number of 

inefficient units 

Number of 

efficient units 

Number of 

reference units 
CCR 0.947±0.0683 0.743 122 (57.01%) 92 (42.99%) 16 

BCC 0.978±0.0389 0.787 103 111 19 
Scale Efficiency 0.968±0.0459 0.946 - - - 
 
The highest CExC saving was related to 

diesel fuel and nitrogen fertilizer with about 
1407 (21.21%) and 902 (24.95%) MJ ha-1, 
respectively. However, the highest percentage 
of saving in CExC was related to potassium 
and phosphate fertilizers with 66.51 (34.51 MJ 
ha-1) and 46.02% (201.70 MJ ha-1), 
respectively. This shows that inputs, especially 
potassium and phosphate fertilizers, are used 
more than required. 

The values of CExC and its components 

based on the input-oriented fixed and variable 
returns to scale model are shown in Fig. 3. 
Based on the analysis of CCR and BCC 
models, it is possible to reduce the exergy 
consumption of all inputs in these two models 
while maintaining the production level. Based 
on the results of the CCR model and the target 
values obtained, savings of 6.47, 10.42, 7.40, 
13.32, 31.29, 3.25, and 78.6% can be achieved 
in the exergy consumption of diesel fuel, 
electricity, machinery, chemical fertilizers, 
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biocides, seeds, and irrigation, respectively, 
while maintaining the current level of corn 
production yield. These values in the BCC 
model were 3.28, 7.22, 5.41, 6.64, 15.31, 1.12, 
and 6.04%, respectively. The CExC target 
value, based on the CCR model analysis, is 
26833.5 MJ/ha, which represents 2776.6 MJ 
ha-1 (9.38%) of exergy saving. The highest 
amount of cumulative exergy savings based on 
the pure technical efficiency model with 
1437.2, 484.8, and 429.4 MJ ha-1 is related to 
electricity, nitrogen fertilizer, and diesel fuel, 
respectively. Meanwhile, the highest 
percentage of exergy savings of 31.64, 31.29, 
and 13.41% was related to phosphate fertilizer, 
biocides, and nitrogen fertilizer, respectively. 
This suggests an overutilization of inputs 
within the production system. In face-to-face 
interviews, most of the farmers believed that 
the increase in inputs increased the yield, and 
on this basis, they use more inputs to increase 
production without improving the production 
methods. Excessive irrigation and low 

efficiency of water pumping systems in the 
study area have led to an increase in the 
consumption of more than the required amount 
of water in corn production, which, in addition 
to wasting water and electricity, often 
aggravates drainage problems, and reduces soil 
quality (Mousavi-Avval et al., 2011b; Singh, 
Gursahib Singh, & Singh, 2004). The lowest 
percentage of saving in exergy consumption is 
related to seed input (1.12%), which shows 
that the farmers of the region use seeds more 
efficiently than other inputs. The DEA 
analysis, along with the insights from the 
reference set and the findings depicted in Fig. 
3, provides valuable recommendations for 
inefficient farms. By adopting the superior 
operational practices employed by the 
reference farms of their peers, these less 
efficient farms can reduce exergy consumption 
to align with the target values identified 
through the DEA method, all while sustaining 
their current yield levels.  

 

 
Fig. 3. CExC values of different inputs in the current mode, BCC, and CCR models 
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exergy evaluation indices in the current 
condition (default), and optimal states based 
on CCR and BCC models. According to DEA 
analysis, it is possible to reduce CEnC and 

CExC by 9.76 and 9.38%, respectively, while 
maintaining the current production level, by 
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2.75 times higher than CEnC. Also, in general, 
the studied system produces about 121 GJ ha-1 
of energy (Cumulative Net Energy Gain-
CNEnG). As mentioned before, in the analysis 
of energy and exergy in a production system of 
agricultural crops 
(Cumulative net energy gain), only inputs for 
which costs and energy have been spent are 
considered. For this reason, ER and CNEnG 
can be greater than one and zero, respectively. 
EI and EP indices show that 6.64 MJ of energy 
is consumed to produce each kilogram of corn, 
or in other words, about 0.15 kg of corn is 
produced for each MJ of energy consumed. In 
similar studies in Iran, ER for corn production 
has been reported as 4.78 (Pishgar-Komleh et 
al., 2012), 1.69 to 2.17 (Banaeian & 
Zangeneh, 2011), and 2.67 (Yousefi, Mahdavi, 
et al., 2014). Based on the optimization 
results, an improvement of about 11% in the 
ER and EP indices of the corn production 
system is possible only based on following the 
way of input management by efficient units. 
CDP, which is often used to check the 
efficiency of exergy consumption and system 
stability, was obtained around 7.6. This index 
for different types of corn production systems 
in Mexico has been calculated from 1.6 to 1.14 

(Juárez-Hernández et al., 2019). The obtained 

CDP is also higher than that of some 
agricultural products such as wheat (2.9, 
(Yildizhan & Taki, 2019)), black tea (0.43, 
(Pelvan & Özilgen, 2017), rapeseed (2.19, 
(EsmaeilpourTroujeni et al., 2021)), and 
strawberry (0.29, (Yildizhan, 2018)), which is 
mostly due to the high yield and higher exergy 
output of corn in this study. The larger these 
indicators are, the more stable the production 
system and the less environmental 
consequences. The RI of about 0.87 in this 
study shows that corn production is a 
relatively renewable process. The obtained RI 
index is higher than that of other agricultural 
products in similar studies 
(EsmaeilpourTroujeni et al., 2021; Pelvan & 
Özilgen, 2017; Yildizhan & Taki, 2018, 2019), 
which is mainly due to the higher output 
exergy in the corn production system. 

Optimum use of non-renewable inputs, 
especially electricity, diesel fuel, and chemical 
fertilizers, increases the process's RI. As 
shown in Figure 2, the highest CExC belongs 
to these three inputs, which are produced from 
non-renewable sources.  

 
Table 4- Energy and exergy evaluation indicators in default scenario and optimized scenarios 

Items Unit  Current 
CCR BCC 

Target Change (%) Target Change (%) 

CEnC MJ ha-1 68924.7 62200.5 -9.76 64537.7 -6.36 

ER - 2.75 3.05 +10.81 2.94 +6.80 

EI  MJ kg-1 6.64 5.99 -9.76 6.22 -6.36 

EP  kg MJ-1 0.150 0.167 +10.81 0.161 +6.80 

CNEnG MJ ha-1 120923.3 127653.5 +5.56 125316.2 +3.63 

DCEnCa MJ ha-1 46867.7 (68.00%) 42266.5 (67.95%) -9.82 43762.9 (67.81%) -6.63 

ICEnCb MJ ha-1 22057.0 (32.00%) 19934.0 (32.05%) -9.63 20774.8 (32.19%) -5.81 

RCEnCc MJ ha-1 2662.7 (3.86%) 2570.5 (4.23%) -3.46 2627.6 (4.07%) -1.32 

NRCEnCd MJ ha-1 66261.9 (96.14%) 59629.9 (95.87%) -10.01 61910.2 (95.93) -6.57 

CExC MJ ha-1 29610.0 26833.5  27843.1  

CDP - 7.60 8.40 +10.35 8.09 +6.35 

RI -  0.871 0.883 +1.41 0.879 +0.90 

DCExCe MJ ha-1 20424.6 (68.98%) 18557.9 (69.16%) -9.24 19210.4 (68.99%) -05.95 

ICExCf MJ ha-1 9185.5 (31.02%) 8275.5 (30.84%) -9.91 8632.7 (31.01%) -6.02 

RCExCg MJ ha-1 542.5 (1.83%) 524.87 (1.97%)) -3.25 536.4 (1.93%)) -1.12 

NRCExCh MJ ha-1 29067.5 (98.17%) 26308.6 (98.04%) -9.49 27306.7 (98.07%) -6.06 
a Direct CEnC, b Indirect CEnC, c Renewable CEnC, d Non- renewable CEnC, e Direct CExC, f Indirect CExC, g Renewable CExC, and h Non- 

renewable CExC 

 
Therefore, their optimal use increases the 

renewable index. Supplying input from 
renewable sources will also increase the 
sustainability and renewability of the system. 
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Based on the analysis of DEA method, CDP 
and RI can be improved by about 10.3% and 
1.4%, respectively, with optimal and 
appropriate use of inputs based on existing 
conditions and facilities. By increasing the 
efficiency of irrigation and water pumping 
systems, an effective step can be taken in 
reducing electricity consumption, which is the 
main exergy input, and of course increase 
exergy efficiency. The conventional tillage 
system in corn production in Iran involves the 
intensive use of energy-intensive tillage 
machines such as moldboard plow and deep 
tillage tolls. 

This has caused an increase in the use of 
agricultural machinery and diesel fuel. As 
reported in several studies, conservation tillage 
methods reduce the use of agricultural 
machinery and reduce fuel consumption 
compared to conventional tillage (Filipovic, 
Kosutic, Gospodaric, Zimmer, & Banaj, 2006; 
Ordikhani et al., 2021). Also, the use of better 
machinery management techniques can reduce 
diesel fuel consumption and its harmful effects 
on the environment (Mousavi-Avval et al., 
2011a). 

As can be seen from Table 4, the main 
components of energy consumption and 
cumulative exergy in the corn production 
system are direct and non-renewable types of 
energy. The share of about 96% of non-
renewable energies in CEnC and 98% in 
CExC has caused the strong dependence of 
corn production on non-renewable resources. 
In many similar studies, the ratio of DCExC 
and DCEnC is higher than that of ICEnC and 
ICExC, and the ratio of NRCEnC and 
NRCExC is much higher than that of RCEnC 
and RCExC (Erdal et al., 2007; 
EsmaeilpourTroujeni et al., 2021; Juárez-
Hernández et al., 2019; Mousavi-Avval et al., 
2011a; Ordikhani et al., 2021; Rahman & 
Hasan, 2014; Yildizhan & Taki, 2018). The 
agricultural production system based on the 
intensive use of non-renewable resources is 
not sustainable in the long term and has 
harmful consequences on human health and 
the environment (Khan, Khan, Hanjra, & Mu, 
2009). Electricity is the main component of 

CEnC and CExC in the production of corn (to 
pump water and irrigate fields) and its 
production in Iran is mainly based on non-
renewable fossil resources (Anonymous, 
2018). Using renewable electricity instead of 
fossil electricity in corn production processes 
like other processes can be one of the ways to 
reduce environmental consequences and 
increase RI.  

In Iran, mainly due to the lack of economic 
competition with fossil fuels, renewable 
energy sources, except for hydropower plants, 
are still not developed much. However, in 
recent years, efforts and plans have been made 
to promote the use of renewable resources for 
energy production. For example, the 
production of electricity from wind has 
increased in recent years, and efforts are 
underway to make more use of solar energy. It 
is expected that the share of energy from 
renewable sources in electricity production in 
Iran will increase in the future (Anonymous, 
2018). Also, promising researches have been 
conducted on harnessing wind (Jalalvand, 
Bakhoda, & Almassi, 2014) and solar energy 
(Parvaresh Rizi & Ashrafzadeh, 2018; Shojaei 
& Akhavan, 2020) for water pumping, that 
accounts for the majority of electricity 
consumption in agriculture. Animal manures 
and organic fertilizers are currently used 
commercially in Iran's agricultural sector, and 
in the past few years, the production of animal 
manures has increased as a result of the 
increase in livestock and poultry farms. This 
way, the renewability index in the default 
scenario increases to 0.93 and according to the 
CCR model, it increases to about 0.94. 
Another suggestion to increase the 
renewability of the system is to use renewable 
fuels such as biodiesel instead of diesel and 
organic fertilizers instead of chemical 
fertilizers (EsmaeilpourTroujeni et al., 2021; 
Khan et al., 2009; Mousavi-Avval et al., 
2011a; Soltanali, Nikkhah, & Rohani, 2017). 

 
Life cycle assessment 

Life cycle assessment based on default 
(current) values, and optimized values based 
on BCC model and CCR model was 
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performed, and the results were compared. 
Natural resources like minerals and fossil fuels 
are classified as abiotic resources. However, 
the extraction of these resources often leads to 
their depletion. Energy production is one of 
the biggest and most important consumers of 
natural resources and one of the main factors 
of consumption and depletion of abiotic 
resources (Milà I Canals, Burnip, & Cowell, 
2006). In agricultural production, the depletion 
of minerals such as phosphate and potash, 
alongside fossil fuels, are among the most 
important subsets of the Abiotic Depletion 
(AD). From Table 5, it can be seen that to 
produce one kilogram of corn, 9.513 g Sb eq is 
discharged from abiotic resources. Based on 
the results of the DEA model, by optimizing 
input consumption, there is a potential of 
10.38% reduction in the effects of depletion of 
abiotic resources caused by corn production 
with the current facilities and conditions in the 
study area. Fig. 4 shows the contribution of the 
corn production system inputs in the impact 
categories. About 91% of the “abiotic 
depletion” category is due to electricity 
consumption, followed by diesel fuel and 
chemical fertilizers. Therefore, increasing the 
efficiency of electrical systems in pumping 
irrigation water, as well as the use of 
electricity from renewable sources, is very 
effective in reducing the depletion of abiotic 
resources. In a study that assessed the life 
cycle of the wheat production system, 
electricity, diesel fuel, and chemical fertilizers 
were reported as the most important 
consumers of abiotic resources (Houshyar & 
Grundmann, 2017). 

Acidification, particularly in the form of 
acid rain, negatively affects terrestrial or 
aquatic ecosystems (Jacob-Lopes, Zepka, & 
Deprá, 2021). According to Table 5, the 
“Acidification” potential is 0.019 g SO2 eq per 
1 kg of corn production. The highest 
acidification potential due to corn production 
is related to electricity and on-farm emissions, 
respectively, which are responsible for about 
98% of the total acidification potential. The 
potential of acidification due to the production 
of 1 kg of corn based on the optimized values 
of BCC and CCR models was found to be 
17.76 and 17.06 g SO2 eq, respectively, which 
shows a reduction of 7.06 and 10.71 percent, 
respectively. 

Enrichment of water environments with 
dissolved compounds that leads to excessive 
growth of some living organisms is called 
eutrophication. In fact, eutrophication is the 
response of the ecosystem to the excessive 
increase of natural or artificial substances in a 
terrestrial or aquatic environment (Houshyar & 
Grundmann, 2017). The eutrophication 
potential for the production of each kilogram 
of corn is about 3.73 g PO4

3- eq. On-farm 
emissions, mainly due to the loss of chemical 
fertilizers, especially nitrogen, are responsible 
for 89.42% of eutrophication. An effective 
way to reduce eutrophication is to minimize 
losses of nitrogen and phosphate fertilizers 
(Bechmann & Stålnacke, 2005; Houshyar & 
Grundmann, 2017). Life cycle assessment 
based on DEA model values showed that there 
is a potential to reduce eutrophication effects 
by 8.38%. 

 
Table 5- Values of the environmental impacts for 1 kg of corn production 

Impact category Unit Current condition 
BCC model CCR model 

BCC Change (%) CCR Change (%) 

Abiotic depletion kg Sb eq 0.009513 0.008844 -7.03248 0.008526 -10.38 
Acidification kg SO2 eq 0.019105 0.017757 -7.05574 0.017059 -10.71 

Eutrophication kg PO4
3- eq 0.003727 0.003571 -4.18567 0.003398 -8.83 

Global warming (GWP100) kg CO2 eq 1.36434 1.272863 -6.70485 1.227315 -10.04 
Ozone layer depletion kg CFC-11 eq 1.58E-09 1.46E-09 -7.59494 1.34E-09 -15.19 

Human toxicity kg 1,4-DB eq 0.391071 0.333648 -14.6835 0.321487 -17.79 

Fresh water aquatic ecotoxicity kg 1,4-DB eq 0.095594 0.089181 -6.70858 0.085796 -10.25 
Marine aquatic ecotoxicity kg 1,4-DB eq 304.9183 282.9338 -7.20996 273.1014 -10.43 

Terrestrial ecotoxicity kg 1,4-DB eq 0.002271 0.001815 -20.0793 0.001725 -24.04 
Photochemical oxidation kg C2H4 eq 0.000685 0.000635 -7.29927 0.000613 -10.51 
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Global warming is one of the harmful 
effects of greenhouse gases, which has led to 
an increase in the Earth’s average temperature 
and ocean levels. The capacity of gases in 
absorbing and trapping solar radiation is not 
the same, and it is evaluated relative to the 
potential of 1 kg of CO2 over a period of 100 
years. Hence, the global warming potential of 
a greenhouse gas is expressed in terms of kg 
carbon dioxide equivalent (kg CO2 eq). The 
main cause of the ozone layer depletion is the 
chemicals produced by human activities, 
which are called Ozone-Depleting Substances 
(ODS). As can be seen from Figure 4, 
electricity has the highest load on GWP with 
83.12%, followed by on-farm emissions and 
diesel fuel with a share of 9.72% and 4.55%, 
respectively. Diesel fuel, biocides, and 
chemical fertilizers have the highest load on 
OLD with 42.67, 31.50, and 17.78%, 
respectively, and the share of electricity is 
insignificant (less than 1%). Diesel fuel and 
on-farm emissions, which are mostly due to 
the consumption of diesel fuel in agricultural 
machinery, and chemical fertilizers and 
biocides, are major contributors to GWP and 
OLD. Tillage is the main consumer of diesel 
fuel, followed by harvesting. In the study of 
the impact of wheat production system on 
global warming, the most effective factor was 
fuel consumption in plowing, planting, and 
harvesting operations (Fallahpour, 
Aminghafouri, Ghalegolab Behbahani, & 
Bannayan, 2012; Houshyar & Grundmann, 
2017). Optimizing tillage operations and 
optimal use of plowing tools will reduce fuel 
consumption and thus reduce its impact on 
GWP (Lovarelli, Bacenetti, & Fiala, 2017). 
The results show that the GWP of 1 kg of corn 
production is about 1.346 kg CO2 eq. 
However, based on the findings of DEA, with 
the optimal use of available resources through 
the pursuit of efficient farms in the study area 
(reference group), it is possible to reduce the 
GWP of corn production by 10.04%. This 
way, a 15.19 percent reduction in the load on 
OLD is also achieved. 

Another major impact category is 
photochemical oxidation, which is a dangerous 

chemical air pollutant that causes various 
problems such as eye irritation and damage to 
some materials and products. This 
phenomenon mostly occurs in the presence of 
emissions from the combustion of fossil fuels, 
sunlight, and low humidity (Baumann & 
Tillman, 2004). The production of 1 kg of corn 
may cause a photochemical oxidation potential 
of 0.685 g C2H4 eq, 98% of which is due to the 
use of electricity (Fig. 4). Life cycle 
assessment based on optimized values using 
DEA showed that there is a potential to reduce 
10.51% of the potential of photochemical 
oxidation caused by corn production through 
optimizing the input consumption of 
inefficient farms. 

In toxicity categories that include Human 
Toxicity (HT), Fresh Water Aquatic Eco-
toxicity (FWAE), Marine Aquatic Eco-toxicity 
(MAE), and Terrestrial Eco-toxicity (TE), 
electricity is one of the most influential inputs. 
The share of electricity in the MAE impact 
category is about 99%. In the TE category, on-
farm emissions have the highest share with 
51.09%, while in the BCC and CCR models, 
its share decreases to 42.83% and 41.86%, 
respectively, but the share of electricity 
increases. The contribution of inputs in 
different subcategories of toxicity impact 
category is shown in Fig. 5. The DEA results 
show that with the optimal use of inputs, 10.25 
to 24.05% of the effects of toxicity categories 
caused by corn production can be reduced. 

The comparison of the normalized 
environmental effects of producing 1 kg of 
corn under current conditions (default 
scenario) and the optimized values using the 
input-oriented BCC and CCR models based on 
the CML 2 baseline 2000 V2.05 / Netherlands, 
1997 model is shown in Fig. 5. It can be seen 
that corn production has the highest load on 
MAE, AC, and FWAE impact categories, 
respectively, while the lowest load is on OLD. 
This figure also shows that the DEA method 
can reduce all environmental impact categories 
by 9% to 24% by optimizing inputs. 

 
 

Conclusion 
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Relatively high yield of corn and higher 
exergy output in the corn production system 
have led to the achievement of a production 
system with efficient exergy consumption 
(CDP=7.6). Additionally, according to the 
obtained RI index (0.87), in general, the corn 
production process in the study area is 
relatively renewable. However, it can be 
improved by optimal use of inputs, especially 
non-renewable inputs such as electricity, diesel 
fuel, and chemical fertilizers. Electricity is the 

main component of CEnC and CExC in corn 
production, and replacing non-renewable 
sources of electricity with renewable sources 
can lead to reduced environmental 
consequences and improved energy indicators. 
Other important inputs affecting the 
renewability and sustainability of the corn 
production system, which must be used very 
carefully and efficiently, are diesel fuel and 
chemical fertilizers. 

 

 
Fig. 4.The contribution of inputs in different impact categories in corn production system 

 

 
Fig. 5. Comparison of environmental impact categories of 1 kg of corn production in three scenarios (Method: 

CML 2 baseline 2000 V2.05/the Netherlands,1997/Normalization) 
 

0

10

20

30

40

50

60

70

80

90

100

D
ef

au
lt

B
C

C

C
C

R

D
ef

au
lt

B
C

C

C
C

R

D
ef

au
lt

B
C

C

C
C

R

D
ef

au
lt

B
C

C

C
C

R

D
ef

au
lt

B
C

C

C
C

R

D
ef

au
lt

B
C

C

C
C

R

D
ef

au
lt

B
C

C

C
C

R

D
ef

au
lt

B
C

C

C
C

R

D
ef

au
lt

B
C

C

C
C

R

D
ef

au
lt

B
C

C

C
C

R

AD AC EU GWP OLD HT FWAE MAE TE PO

(%
)

Impact category

Seed

Biocides

Infrastructure

N-fertilizer

P-fertilizer

K-fertilizer

Electricity

Diesel

on farm

0 2E-11 4E-11 6E-11 8E-11 1E-10

AD

AC

EU

GWP

OLD

HT

FWAE

MAE

TE

PO

Netherlands,1997/Normalization

Im
p

ac
t 

ca
te

g
o

ry

Default

BCC model

CCR model



40     Journal of Agricultural Machinery Vol. 15, No. 1, Spring 2025 

 

DEA is an effective method for finding 
efficient farms and recommending best 
practices aimed at minimizing exergy 
consumption to meet specified targets. Results 
showed that the average efficiency of all farms 
in terms of CExC in CCR and BCC models 
was 94.7 and 97.8%, respectively. Based on 
the DEA results, it was possible to save 6.47, 
10.42, 7.40, 13.32, 31.29, 3.25, and 78.6%, 
respectively, in the exergy consumption of 
diesel fuel, electricity, machinery, chemical 
fertilizers, biocides, seeds, and irrigation, 
while maintaining the current yield level, only 
by promoting methods used by efficient farms. 
Consequently, CEnC and CExC have 
decreased by 9.76 and 9.38%, respectively. 
Furthermore, there was a potential for 
reductions of about 10, 17, 8, 10, and 11% 
respectively in the impact categories of 
“depletion of abiotic resources”, 
“acidification”, “eutrophication”, “GWP”, and 
“photochemical oxidation”. The improvement 
of ER, EP, CDP, and RI energy indices was 
also about 11, 11, 10.3, and 1.4%, 
respectively. 
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ذرت  دیتول یطیمحستیز اتیچرخه ح یابیو ارز یتجمع یو اکسرژ یمصرف انرژ یسازنهیبه

 در استان لرستان

 
 2نژاد، مجتبی صفایی1، عباس عساکره*1سلیمانیمحسن 

 61/61/6011تاریخ دریافت: 
 12/66/6011تاریخ پذیرش: 

 دهیچک

و  یاکسارژ لیاذرت در استان لرستان بر اساا  تحل دیتول ستمیس یطیمحستیو اثرات مختلف ز یمصرف نهاده، کاهش مصرف انرژ یسازنهیبه
و کاود  زلیاداگلا ، برق، ساوخت د-آمده و با توجه به معادله کابدستبه جیقرار گرفت. بر اسا  نتا یمورد بررس یطیمحستیز اتیچرخه ح یابیارز
رانادمان تماام مازارز از ن ار  نیانگینشان داد که م DEA جیاند. نتاذرت داشته دیتول ستمیدر س یتجمع یسهم را در مصرف اکسرژ نیشتریب تروژن،ین

 میپتاس یکودها ژهیوها بهنشان داد که نهاده جینتا نیدرصد است. همچن 8/47 و 7/40 بیترت، بهBCCو  CCR یهادر مدل یتجمع یمصرف اکسرژ
سوخت  یدر مصرف اکسرژ بیترتدرصد به 78/1و  12/2، 14/26، 21/62، 01/7، 01/61، 07/1 توانیم نیشود. همچنیمصرف م ازیاز ن شیب اتو فسف

 مازارزمورد اساتفاده توسا   یهاروش جیو تنها با ترو یبا حفظ سطح عملکرد فعل ،یاریآب یسموم، بذر و انرژ ،ییایمیش یکودها ها،نیبرق، ماش زل،ید
 کرد. ییجوکارآمد، صرفه
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