Document Type : Research Article-en
Author
Department of Biosystems Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
Abstract
The main objective of this research is to create a comprehensive and adaptable framework for assessing performance in agricultural supply chains and develop two improving approaches. The most relevant performance measures are selected to assess the current status of services in agricultural supply chains (ASCs). The contribution of this research is related to the selection of key performance indicators (KPIs) and approaches for enhancing ASC performance. The proposed framework comprises performance measurement and a service selection process. Two approaches have been developed based on the selected KPIs of services in ASC to identify which services require improvement. The proposed approaches are robust and versatile tools for agricultural managers to strategize and enhance their supply chains. A case study is also presented from Iran. For this region, selection approaches prioritize agricultural services such as postproduction consulting, financial support, mechanization, business consulting, and input supply. The framework shows that these services should be improved in order to better meet the needs of the region under study.
Keywords
Main Subjects
©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)
- Ahumada, O., & Villalobos, J. R. (2009). Application of planning models in the agri-food supply chain: A review. European Journal of Operational Research, 195(1), 1-20. https://doi.org/10.1016/j.ejor.2008.04.016
- Akkerman, R., Farahani, P., & Grunow, M. (2010). Quality, safety and sustainability in food distribution: A review of quantitative operations management approaches and challenges. OR Spectrum, 32(4), 863-904. https://doi.org/10.1007/s00291-010-0223-2
- Allaoui, H., Guo, Y., Choudhary, A., & Bloemhof, J. (2018). Sustainable agro-food supply chain design using two-stage hybrid multi-objective decision-making approach. Computers & Operations Research, 89, 369-384. https://doi.org/10.1016/j.cor.2016.10.012
- Aramyan, C., Ondersteijn, O., van Kooten, O., & Lansink, A. O. (2006). Performance indicators in agri-food production chains. In Quantifying the agri-food supply chain (pp. 49–66). Springer. https://doi.org/10.1007/1-4020-4693-6_4
- Baltacioglu, T., Ada, E., Kaplan, M. D., Yurt, O., & Kaplan, Y. C. (2007). A new framework for service supply chains. The Service Industries Journal, 27(2), 105-124. https://doi.org/10.1080/02642060601122629
- Banaeian, N., Zangeneh, M., & Golinska-Dawson, P. (2022). Multi-criteria sustainability performance assessment of horticultural crops using DEA and ELECTRE IV methods. Renewable Agriculture and Food Systems, 37(6), 649-659. https://doi.org/10.1017/S1742170521000248
- Bhagwat, R., & Sharma, M. K. (2007). Performance measurement of supply chain management: A balanced scorecard approach. Computers and Industrial Engineering, 53(1), 43-62. https://doi.org/10.1016/j.cie.2007.04.001
- Bigliardi, B., & Bottani, E. (2010). Performance measurement in the food supply chain: A balanced scorecard approach. Facilities, 28(5/6), 249-260. https://doi.org/10.1108/02632771011031493
- Buyukozkan, G., Cifci, G., & Guleryuz, S. (2011). Strategic analysis of healthcare service quality using fuzzy AHP methodology. Expert Systems with Applications, 38(8), 9407-9424. https://doi.org/10.1016/j.eswa.2011.01.103
- Chang, H. H., Hung, C.-J., Wong, K. H., & Lee, C.-H. (2013). Using the balanced scorecard on supply chain integration performance—a case study of service businesses. Service Business, 7(4), 539-561. https://doi.org/10.1007/s11628-012-0164-2
- Chang, P.-T., Hung, K.-C., Lin, K.-P., & Chang, C.-H. (2006). A comparison of discrete algorithms for fuzzy weighted average. IEEE Transactions on Fuzzy Systems, 14(5), 663-675. https://doi.org/10.1109/TFUZZ.2006.879986
- Chang, P.-T., Lee, J.-H., Hung, K.-C., Tsai, J.-T., & Perng, C. (2009). Applying fuzzy weighted average approach to evaluate office layouts with Feng-Shui consideration. Mathematics and Computers in Simulation, 79(4), 1514-1537. https://doi.org/10.1016/j.matcom.2008.09.001
- Cho, D. W., Lee, Y. H., Ahn, S. H., & Hwang, M. K. (2012). A framework for measuring the performance of service supply chain management. Computers & Industrial Engineering, 62(3), 801-818. https://doi.org/10.1016/j.cie.2011.12.023
- Despoudi, S., Spanaki, K., Rodriguez-Espindola, O., & Zamani, E. D. (2021). Sustainability in Agricultural 4.0 supply chains. In Agricultural supply chains and Industry 4.0 (pp. 95-113). Palgrave Macmillan. https://doi.org/10.1007/978-3-030-72770-3_6
- Dong, W. M., & Wong, F. S. (1987). Fuzzy weighted averages and implementation of the extension principle. Fuzzy Sets and Systems, 21(2), 183-199. https://doi.org/10.1016/0165-0114(87)90018-4
- Ellram, L. M., Tate, W. L., & Billington, C. (2007). Services supply management: The next frontier for improved organizational performance. California Management Review, 49(4), 44-66. https://doi.org/10.2307/41166404
- Evangelista, S. S., Aro, J. L., Selerio, E., & Pascual, R. (2023). An integrated Fermatean fuzzy multi-attribute evaluation of digital technologies for circular public sector supply chains. International Journal of Computational Intelligence Systems, 16, Article 122. https://doi.org/10.1007/s44196-023-00294-7
- Ganeshkumar, C., Pachayappan, M., & Madanmohan, G. (2017). Agri-food supply chain management: Literature review. Intelligent Information Management, 9(2), 68-96. https://doi.org/10.4236/iim.2017.92004
- Ghazinoori, S., Olfat, L., Soofi, J., & Ahadi, R. (2020). Investigating the organic agricultural products supply chain in Iran. Journal of Agricultural Science and Technology, 20, 71-85.
- Graham, M., Kaboli, D., Sridharan, M., & Taleghani, S. (2012). Creating value and sustainability in agricultural supply chains. MIT Sloan School of Management.
- Gunasekaran, A., Patel, C., & McGaughey, R. E. (2004). A framework for supply chain performance measurement. International Journal of Production Economics, 87(3), 337-347. https://doi.org/10.1016/j.ijpe.2003.08.003
- Jifroudi, S., Teimoury, E., & Barzinpour, F. (2020). Designing and planning a rice supply chain: A case study for Iran farmlands. Decision Science Letters, 9(2), 163-180. https://doi.org/10.5267/j.dsl.2020.1.001
- Joshi, R., Banwet, D. K., Shankar, R., & Gandhi, J. (2012). Performance improvement of cold chain in an emerging economy. Production Planning & Control, 23(11), 817-836. https://doi.org/10.1080/09537287.2011.591611
- Kazemi, M. J., & Samouei, P. (2024). A new bi-level mathematical model for government-farmer interaction regarding food security and environmental damages of pesticides and fertilizers: Case study of rice supply chain in Iran. Computers and Electronics in Agriculture, 219, Article 108771. https://doi.org/10.1016/j.compag.2024.108771
- Liou, T. S., & Wang, M. J. J. (1992). Fuzzy weighted average: An improved algorithm. Fuzzy Sets and Systems, 49(1), 105-118. https://doi.org/10.1016/0165-0114(92)90228-C
- Mangla, S. K., Luthra, S., Rich, N., Kumar, D., Rana, N. P., & Dwivedi, Y. K. (2018). Enablers to implement sustainable initiatives in agri-food supply chains. International Journal of Production Economics, 203, 379-393. https://doi.org/10.1016/j.ijpe.2018.07.012
- Manzini, R., & Accorsi, R. (2013). The new conceptual framework for food supply chain assessment. Journal of Food Engineering, 115(2), 251-263. https://doi.org/10.1016/j.jfoodeng.2012.10.026
- Mapes, J., New, C., & Szwejczewski, M. (1997). Performance trade-offs in manufacturing plants. International Journal of Operations & Production Management, 17(9), 1020-1033. https://doi.org/10.1108/01443579710174642
- Morkūnas, M., Rudienė, E., & Ostenda, A. (2022). Can climate-smart agriculture help to assure food security through short supply chains? A systematic bibliometric and bibliographic literature review. Business, Management and Economics Engineering, 20(2), 207-223. https://doi.org/10.3846/bmee.2022.17101
- Oubrahim, I., Sefiani, N., & Happonen, A. (2022). Supply chain performance evaluation models: A literature review. Acta Logistica, 9(2), 207-221. https://doi.org/10.22306/al.v9i2.298
- Ramos, E., Coles, P. S., Chavez, M., & Hazen, B. (2022). Measuring agri-food supply chain performance: Insights from the Peruvian kiwicha industry. Benchmarking: An International Journal, 29(5), 1484-1512. https://doi.org/10.1108/BIJ-10-2020-0544
- Rehman, A. U., Al-Zabidi, A., AlKahtani, M., Umer, U., & Usmani, Y. S. (2020). Assessment of supply chain agility to foster sustainability: Fuzzy-DSS for a Saudi manufacturing organization. Processes, 8(5), Article 577. https://doi.org/10.3390/pr8050577
- Relich, M., & Pawlewski, P. (2017). A fuzzy weighted average approach for selecting portfolio of new product development projects. Neurocomputing, 231, 19-27. https://doi.org/10.1016/j.neucom.2016.05.104
- Routroy, S., & Behera, A. (2017). Agriculture supply chain: A systematic review of literature and implications for future research. Journal of Agribusiness in Developing and Emerging Economies, 7(3), 275-302. https://doi.org/10.1108/JADEE-05-2015-0016
- Sengupta, K., Heiser, D., & Koll, L. (2006). Manufacturing and service supply chain performance: A comparative analysis. Journal of Supply Chain Management, 42(4), 4-15. https://doi.org/10.1111/j.1745-493X.2006.04204002.x
- Singh, N., Biswas, R., & Banerjee, M. (2023). A systematic review to identify obstacles in the agricultural supply chain and future directions. Journal of Agribusiness in Developing and Emerging Economies. Advance online publication. https://doi.org/10.1108/JADEE-12-2022-0262
- Thumrongvut, P., Sethanan, K., Pitakaso, R., Jamrus, T., & Golinska-Dawson, P. (2022). Application of Industry 3.5 approach for planning of more sustainable supply chain operations for tourism service providers. International Journal of Logistics Research and Applications. Advance online publication. https://doi.org/10.1080/13675567.2022.2074750
- Trivellas, P., Malindretos, G., & Reklitis, P. (2020). Implications of green logistics management on sustainable business and supply chain performance: Evidence from a survey in the Greek agri-food sector. Sustainability, 12(24), Article 10515. https://doi.org/10.3390/su122410515
- Ulutas, A., Shukla, N., Kiridena, S., & Gibson, P. (2016). A utility-driven approach to supplier evaluation and selection: Empirical validation of an integrated solution framework. International Journal of Production Research, 54(5), 1554-1567. https://doi.org/10.1080/00207543.2015.1098787
- Uysal, F. (2012). An integrated model for sustainable performance measurement in supply chain. Procedia Engineering, 62, 689-694. https://doi.org/10.1016/j.proeng.2012.08.110
- van der Vorst, J. G. A. J., Peeters, L., & Bloemhof, J. M. (2013). Sustainability assessment framework for food supply chain logistics: Empirical findings from Dutch food industry. International Journal on Food System Dynamics, 4(2), 130-139. https://doi.org/10.18461/ijfsd.v4i2.424
- Vorst, J. G. A. J. (2005). Performance measurement in agri-food supply chain networks. In C. J. Ondersteijn (Ed.), Quantifying the agri-food supply chain (pp. 13–24). Springer. https://doi.org/10.1007/1-4020-4693-6_2
- Wu, X. Q., Pu, F., Shao, S. H., & Fang, J. N. (2004). Trapezoidal fuzzy AHP for the comprehensive evaluation of highway network programming schemes in Yangtze River Delta. Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou, 15-19 June 2004 (pp. 4114-4118). IEEE. https://doi.org/10.1109/WCICA.2004.1343728
- Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
- Zangeneh, M., Nielsen, P., Akram, A., & Keyhani, A. (2014). A performance evaluation system for agricultural services in agricultural supply chain. Management and Production Engineering Review, 5(3), 70-80. https://doi.org/10.2478/mper-2014-0029
- Zheng, G., Zhu, N., Tian, Z., Chen, Y., & Sun, B. (2012). Application of a trapezoidal fuzzy AHP method for work safety evaluation and early warning rating of hot and humid environments. Safety Science, 50(2), 228-239. https://doi.org/10.1016/j.ssci.2011.08.065
- Zimmermann, H. J. (2001). Fuzzy set theory—and its applications (4th ed.). Springer. https://doi.org/10.1007/978-94-010-0646-0
Send comment about this article