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Abstract 
Robotic harvesting in agriculture is an effective method for producing healthy fruit, reducing costs, and 

increasing productivity. Detecting and harvesting sweet peppers, however, remains a challenging task. This study 
aims to develop an unsupervised machine vision algorithm to recognize colored sweet peppers using a combination 
of geometric features (Fast Point Feature Histogram- FPFH) and color features (H, S, and V). Depth images were 
captured using a Kinect v2 sensor, and a 3D model was reconstructed. After extracting the geometric and color 
features, data preprocessing involved undersampling to ensure balance and applying the Z-score criterion to 
eliminate outliers. Principal component analysis (PCA) was used to reduce the feature dimensions, and the K-
means clustering model was implemented to categorize the data using six geometric features and three  color 
features. The silhouette coefficient was employed to evaluate clustering quality, and human evaluation 
demonsterated that the algorithm achieved a detection accuracy of 95.10% for sweet peppers. 

 
Keywords: Fast point feature histogram, Fruit detection, Machine vision, Sweet pepper, Unsupervised learning 
 

Introduction 

Agriculture is increasingly moving towards 
automation, which requires smarter 
frameworks and technologies (Tang et al., 
2020). The use of agricultural robots has 
become a popular topic in farming, alongside 
emerging ideas like digital and intelligent 
agriculture (Ball et al., 2016). Manual fruit 
harvesting poses risks such as injuries, falls 
from heights, bee stings, and other hazards, in 
addition to the high labor cost. However, 
robotic harvesting still remains a challenge 
(Shamshiri, Hameed, Karkee, & Weltzien, 
2018). Challenges in robotic harvesting include 
high-precision fruit recognition, building robots 
with high speed and accuracy, and the ability to 
harvest while preserving fruit quality. Smart 
agriculture uses AI technologies like machine 
vision and robots for decision-making in real-
time (Chidambaranathan, Handa, 
Ramanamurthy, & Ramanamurthy, 2018; 
Dharmaraj, & Vijayanand, 2018). Accurate 

fruit recognition by machines is affected by 
various environmental factors including light, 
canopy structure, fruit color, occlusion, plant 
care, fruit maturity, and leaf density (Gongal, 
Amatya, Karkee, Zhang, & Lewis, 2015). RGB 
cameras are commonly used for fruit harvesting 
in robots, as they can capture images in three 
channels simultaneously and extract color, 
geometric, and texture features (Kurtulmus, 
Lee, & Vardar, 2014; Hemming, Bac, & Van 
Tuijl, 2011; Fu, Majeed, Zhang, Karkee, & 
Zhang, 2020). Kurtulmus et al, (2014) used 
RGB color imaging to detect green immature 
fruits under natural illumination conditions in 
their study. The green color of peaches was 
identified as a major challenge. The maximum 
accuracy of detecting immature fruits obtained 
in this study was 84.6%, and the processing 
time was in the range between 72.8 and 112 s 
for individual images in the validation set. Sa et 
al, (2016) used deep convolutional neural 
networks to develop an accurate and efficient 
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fruit detection system. However, this method 
requires a large number of images for model 
training and significant time for labeling these 
images. Previous studies indicate that RGB 
cameras struggle to perform effectively and 
yield satisfactory results when the color of the 
fruit closely resembles that of the background. 
Stein, Bargoti, and Underwood (2016), 
proposed a framework based on multi-sensor 
for identifying mango fruit. The aim of this 
research was to estimate the farm yield using a 
3D model of each tree. A total of 522 trees were 
captured in the images. The R-CNN method has 
been used for object detection. The error rate 
obtained for each tree was 1.36%. In this, they 
address the problem of detecting fruits enclosed 
by leaves. To detect immature green citrus, 
Gan, Lee, Alchanatis, Ehsani, and Schueller 
(2018)  proposed a new algorithm based on the 
combination of color and thermal features to 
distinguish green fruit from the background. 
The detection accuracy has increased from 
86.6% to 95.5% by combining color and 
thermal images. But sensors such as Lidar and 
thermal imaging are costly; therefore, utilizing 
these sensors is often impractical for fruit 
detection. In research Mohamadzamani, 
Javidan, Zand, and Rasouli (2023) developed a 
deep neural network for cucumber detection. 
Testing this method on 120 samples showed 
that the accuracy of the network in correctly 
identifying the position of the cucumber fruit in 
the images was 95.3%. 

Depth cameras have become increasingly 
popular among researchers in recent years. 
These cameras can capture both color and depth 
images of the target simultaneously, providing 
information about the target's position. This 
allows for the computation of three-
dimensional geometric features of objects, 
which is useful for detecting fruits. In one 
study, depth cameras have been used in 
combination with RGB cameras to detect 
repetitious apples and achieve a precision of 
87.0% (Gongal et al., 2016). In another 
research, an algorithm was developed to detect 
apples on trees using an RGB-D camera and 
clustering with Euclidean distance (Nguyen, 
Vandevoorde, Kayacan, De Baerdemaeker, & 

Saeys, 2014). Point cloud data was used to 
detect apples with different 3D descriptors and 
classification methods, achieving acceptable 
results (Tao & Zhou, 2017). A depth camera 
was also used to detect sweet peppers and their 
pedicels, achieving a reported area under the 
curve of 0.71% with an acceptable accuracy (Sa 
et al., 2017). In a different study, a dense point 
cloud of crops was created using an RGB-D 
camera to recognize red sweet peppers, and the 
algorithm accuracy was 90.69% (Zhao et al., 
2020). Researchers also evaluated approach 
strategies for sweet pepper harvesting robots. 
(Ringdahl, Kurtser, & Edan, 2019). Moghimi, 
Aghkhani, and Golzarian (2015) used RGB 
images to detect green sweet peppers. By 
utilizing texture features, the accuracy of 
detection reached 86%. Moreover, by 
combining texture features with color features, 
the accuracy increased to 92%. Doosti-Irani, 
Golzarian, and Aghkhani (2023) used 3D 
geometric features and K-NN classification 

algorithm to detect green sweet peppers. The 
F1-score of the model was 82.85%, and the 
accuracy of detection based on human 
evaluation was 83.07%. Ning et al. (2022) 
proposed a new algorithm named AYDY, 
which achieved a 9.14% improvement in F1-
score compared to YOLO-V4. The algorithm 
demonstrated high accuracy in sweet pepper 
detection and localization, with an average 
localization accuracy of 89.55% and a 
collision-free harvesting success rate of 
90.04%. 

While various sensors (e. g. 2D and 3D) and 
descriptors (e. g. color, texture, and geometric) 
have been used to detect fruits and crops, 
several challenges remain, mainly due to 
changing environmental conditions and plant 
growth (Javidan, Banakar, Vakilian, & Ampatz, 
2023). Sweet pepper detection and harvesting, 
in particular, pose a lot of difficulties such as 
complex and non-uniform backgrounds due to 
varying illumination intensity, fruits and 
pedicels covered by foliage, the fruits' color 
variations throughout their growth phases, 
sunburn, blotchy patches, and color fade. 
Therefore, relying solely on color 
characteristics to detect products is not always 
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efficient or accurate. To tackle these challenges, 
it is essential to consider other information 
beyond color, such as three-dimensional 
geometric features, which can be easily 
obtained and to a great extent address the 
challenges of color images (Mohammadi, 
Massah, & Asefpour Vakilian, 2023). The data 
for this study were collected in the summer 
season of 2021, using a Kinect v2 sensor in a 
greenhouse located in Mohsen Abad, a suburb 
of Mashhad, Iran. Three-dimensional models of 
point clouds were then created and used to 
preprocess information and extract geometric 

features. Finally, unsupervised clustering was 
employed to detect colored sweet peppers. 
Figure 1 provides a summary of the objectives 
of this research. The main objective of this 
study is to present a method for real-time 
detection of sweet peppers in a greenhouse 
environment based on 3D models. The 
innovation of this study lies in using a new 
method for noise reduction in depth images and 
employing a combination of geometric 
and color features to cluster 3D models and 
recognize sweet peppers. 

 

 
Fig.1. The summary of research steps 

 

Materials and Methods  

Point cloud obtainment  
The Kinect v2 sensor was used to acquire 

depth and color images of sweet peppers in a 
greenhouse environment. After installing the 
related drivers for the Kinect v2 sensor in 
MATLAB 2018a software (MathWorks Inc, 
US), the samples were imaged from a distance 

of 80 cm. 3-D models were developed using 
depth maps, and color images were utilized for 
adding color to individual pixels in the 3-D 
models. The value of each pixel in this two-
dimensional image indicates the distance from 
that point to the camera's center (Shen, Wu, & 
Suk, 2017). The characteristics of this sensor 
are shown in (Table 1). 

 

Table 1- The characteristics of Kinect v2 sensor 

Filed of view 

(degrees) 
Operative measuring range 

(meter) 

RGB map 
Resolution 

(pixels)  

Depth map resolution 

(pixels)  

70×60 0.5-4.5 1920×1080 512×424 

 
Removing lateral noise  

One of the challenges associated with depth 
images is the presence of pixels with zero 
values located at the edges of the image. The 

existence of the zero pixels in the depth image 
can affect the accuracy of the subsequent 
processing (Rusu, Blodow, & Beetz, 2009; 
Wan, Li, Jiang, & Xu, 2020). The noise present 
in the depth images was computed using 
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Algorithm 1, which is based on the change in 
sign of the first derivative in the neighborhood 
of each point. In this algorithm,  Δ𝑍 represents 
the difference between the depth values of next 
pixels (Np) and previous pixels (Pp). By 
dividing ΔZ by ΔX, the first derivative of the 
depth function is obtained. If the sign of the first 
derivative is positive, the zero values of edge 
pixels are substituted with Np; otherwise, with 
Pp. 

Algorithm 1: Correcting zero pixels based 
on the first derivative of depth function: 

%Input= X: A 𝒏 × 𝒎  matrix contains zero and 

nonzero values 
%Output= X: A 𝒏 × 𝒎 matrix contains nonzero 

values 
for 𝒊 = 𝟏: 𝒏 
   for 𝒋 = 𝟐: 𝒎 − 𝟏 
      if 𝑿(𝒊, 𝒋) == 𝟎 
         Pp=𝑿(𝒊, 𝒋 − 𝟏) 
         𝒉 =0 

         for 𝒌 = 𝟏: 𝟑 
             𝒉 = 𝒉 + 𝟏  
             if 𝑿(𝒊, 𝒋 + 𝒉) ≠ 𝟎   
                     break 
             end    
         end 
             Np=𝑿(𝒊, 𝒋 + 𝒉) 
             𝜟𝒛 = (𝑵𝒑 − 𝑷𝒑)/(𝒉 + 𝟏) 
                𝒊𝒇 𝜟𝒛 > 𝟎  
                X(𝒊, 𝒋: 𝒋 + 𝒉 − 𝟏) = 𝑵𝒑 
             else 
                X(𝒊, 𝒋: 𝒋 + 𝒉 − 𝟏) = 𝑷𝒑 
             end 
      end 
   end 
end 

To demonstrate how this algorithm corrects 
the zero pixels, the algorithm was applied to a 
one-row depth map (a vector of pixels) (Figure 
2(a)). The corrected depth vector is shown in 
Figure 2(b).  

 

 
Fig.2. Simulation of first order derivative of depth function on a matrix: a) Input matrix, and b) 

Output matrix 
 

In order to validate the proposed algorithm, 
the Monte Carlo method was employed. In this 
method, different inputs are applied to the 
algorithm using randomly generated numbers, 
and the results obtained from each run of the 
algorithm are compared with each other. 
(Adams et al., 2015). In order to assess the 
effectiveness of the proposed algorithm in 

substituting zero-valued points in depth maps, 
N points were randomly chosen from each 
depth map, which contained non-zero values, 
and then converted to zero. Next, the values of 
these converted points were estimated using the 
proposed algorithm and subsequently 
compared with the original non-zero values. 
The Root Mean Square Error (RMSE) index 
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was computed to measure the accuracy of the 
algorithm. In this method, 50 images were 
utilized, and 20 samples were randomly 
selected from each image. In order to assess the 

performance of the proposed algorithm in 
estimating missing data, its RMSE value was 
compared with those of the commonly used B-
fill and F-fill methods. 

 
Making the 3-D model  

Calculate x and y  
The positions 𝑥 and 𝑦 of the point P (x, y, z) 

correspond to each pixel p (j, k) in the depth 
map, as calculated using Eq. (1-2) (Lachat, 
Macher, Mittet, Landes, & Grussenmeyer, 
2015): 

(1) 𝑥 =
𝑗 − 𝐶𝑥

𝐹𝑥
× 𝑧 

(2) 𝑦 =
𝑘 − 𝐶𝑦

𝐹𝑦
× 𝑧 

where, (j, k) are parameters representing the 
position of pixel p in the depth map. In addition, 
(Cx, Cy) and (Fx, Fy) are internal parameters 
representing the coordinates of the focal point 
and focal length, respectively. Z represents the 

depth value for each pixel in the depth map. 
After calculating x and y for each pixel in the 
depth map, it is possible to have a point cloud.  

 

3D Features extraction   
In recent years, extensive research has been 

carried out on extracting descriptive 3D 
features. Local descriptors, such as PFH (Point 
Feature Histogram) (Rusu, Marton, Blodow, & 
Beetz, 2008) and FPFH (Fast Point Feature 
Histogram) (Rusu et al., 2009) which are 
extracted from the key points in the object's 
point cloud, are more suitable for instance 
recognition and object classification. In this 
research, the FPFH descriptor was used to 
describe the surface of objects in the point 
cloud. The relative deviation between normal 
n1 and n2, which corresponded to two points P1 
and P2, was calculated by defining a fixed local 
Darboux frame coordinate system (UVW) at 
one point, as shown in (Figure 3). A set of angle 
values was used to indicate the deviations 
between the two points using UVW coordinates, 
as shown in Eq. (3-6) (Han, Sun, Song, & Xiao, 
2018; Sa et al., 2017). 

 

 
Fig.3. UVW Coordinates from a point cloud 
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where, d is the Euclidean distance between two 
points (p1 and p2). α, ϕ, and θ are descriptor 
angles in the UVW coordinate system. 
Furthermore, density was utilized as a 
geometric feature in the clustering process (Eq. 
7). The coordinates of all point clouds are then 
considered as candidate cluster centers. Thus, 

each point pi with coordinates (xi, yi, zi) is 
potentially a cluster center whose density Di is 
given by the following equation (Zhao et al., 
2020): 

𝐷𝑖 = ∑ exp (−
(𝑥𝑖−𝑥𝑗)2

(
𝑅𝑎𝑥

2
)2

−
(𝑦𝑖−𝑦𝑗)2

(
𝑅𝑎𝑦

2
)2

−

𝑁

𝑗=1

(𝑧𝑖−𝑧𝑗)2

(
𝑅𝑎𝑧

2
)2

)  (7) 

where, N represents the number of 3D points 
within the neighborhood defined by the radius 
Ra = (Rax, Ray, Raz); in this paper, Rax = Ray 
= Raz = 0.02 m. The shape of the cluster can 
then be appropriately adjusted based on the 
selection of parameters Rax, Ray, Raz, which 
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are related to the actual 3D dimensions.  
 

Color features extraction   
In order to extract color features, the RGB 

color model was converted to the HSV model, 
and the three color components including H, S, 
and V were extracted. HSV color space was 
consistent with human eye color perception and 
showed fairly good light interference resistant 
capability. In general, the use of the HSV color 
space is useful in many areas of image 
processing because separate color features are 
easily accessible, which can help in object 
detection by providing more distinctive 
features. 

 

Preprocessing 

Data balancing with color filter 
It is natural that simply using all the 

extracted values does not lead to a correct 
diagnosis. Therefore, it is necessary to conduct 
pre-processing on the data. Considering that the 
three-dimensional models were developed in 
greenhouse and under uncontrolled conditions, 
a wide range of data points across the X and Y 
axes has been obtained. Therefore, the ratio of 
sweet pepper points is very low compared to the 
points related to branches, leaves, and the 
surrounding environment. Due to the 
imbalanced nature of the dataset, clustering 
may favor non-pepper data. To address this 
issue, the data were balanced using the sample 
reduction method and the under-sampling 
module in Python software. Therefore, the 
threshold values for color distinction between 
pepper and other parts of the plant were 
determined for orange pepper at H > 0.13 and 
for yellow pepper at H > 0.17 by checking the 
histogram of this color channel. Labeling and 
balancing were done based on this threshold 
value. After this step, the image background 
was removed by applying a depth filter of Z < 
120 cm. Finally, the Z-Score criterion was used 
to remove outlier data that were far from the 
overall average in each feature. Using the Z-
Score criterion, data points that fell outside the 
range (X -̅3σ, X ̅+3σ) were identified as outlier 
data and removed. 

 
Principal Component Analysis (PCA) 

The number of extracted features is 36, 
which comprise three color features (H, S, and 
V) along with 33 geometric features. Due to the 
high dimensionality of the geometrical features, 
a PCA analysis was performed, and the number 
of dimensions of the geometrical features was 
reduced to five. Therefore, the final features for 
entering the clustering model include five PCA 
components, three components from the HSV 
color channel, and Di. 

 
Unsupervised Learning  

Unsupervised K-means clustering method 
was used for clustering. The K-means 
algorithm is a popular clustering algorithm in 
unsupervised learning. Its goal is to divide input 
data into k different clusters so that the data in 
each cluster are similar to each other and 
distinct from the data in other clusters. The 
algorithm works by randomly initializing k 
cluster centroids, assigning each data point to 
the nearest centroid, and then computing the 
new centroid for each cluster as the mean of all 
data points assigned to it. This process is 
repeated until the centroids converge to a stable 

solution. Based on the research problem of 

detecting sweet peppers, which is the focus of 
this study, the number of clusters is considered 
to be two. In order to check the correctness of 
the clustering, the degree of cluster divergence 
was calculated using the silhouette coefficient 
(Rousseeuw, 1987). The silhouette coefficient 
ranges from -1 to 1, where a value closer to 1 
indicates better clustering. A negative value 
suggests unsuitable clustering. To identify the 
pepper cluster, it is necessary to perform 
clustering first. By identifying the cluster, the 
3D model corresponding to it can be retrieved 
using a threshold value, H, which is defined and 
utilized. The resulting 3D image is shown in 
Figures 6 and 7. After forming a 3D model of 
the sweet pepper class and comparing it with 
the initial model, it underwent human 
evaluation and its accuracy is reported in Table 
3. 
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Dataset   

The dataset comprised 20 3D models, 
including five orange and yellow pepper 
models for algorithm development, with the 
remaining fifteen models reserved for 
algorithm evaluation. 

Results and Discussion 

Results of removing lateral noise 
Based on the results in Table 2, both the 

lower and upper bounds for the mean of RMSEs 
were found to be smaller than those of the other 
two methods (B-fill and F-fill). Therefore, this 
method was confirmed to be superior to the 
other two in terms of detecting the embeded 
noisy data. 

 
Table 2- Descriptive statistics of obtained RMSEs 

Proposed algorithm B-Fill F-Fill  

1.89 2.01 1.85 Minimum 
4.85 24.61 27.18 Maximum 
3.97 5.25 5.43 Average 
0.66 2.24 2.58 Standard deviation 
3.56 4.07 4.09 First quartile 
4.11 4.82 4.89 Second quartile(median) 
4.52 5.75 5.84 Third quartile 
3.8 4.81 4.92 Lower bound of 95 % CI   

4.10 5.69 5.94 Upper bound of 95 % CI 

 
The smaller standard deviation observed in 

the proposed method suggests higher reliability 
compared to the other two methods, as 
demonstrated in the box plot presented in 

Figure 4. Additionally, Figure 5 displays the 
RMSE values obtained by the three methods in 
different iterations, highlighting the differences 
among them. 

 

 
Fig.4. Results from the Monte Carlo method  
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Fig.5. Root mean square error (RMSE) results from Monte Carlo simulations with 1,000 Iterations 

 
After eliminating noise from the depth maps, 

it becomes possible to carry out further 
processing on 3D models with fewer errors. By 
removing noise from depth images and 
replacing erroneous values with accurate ones, 
creating 3D models, object detection, 
background removal, and feature extraction can 

be performed with greater precision. In the 
context of object detection in 3D models, the 
geometric properties of points in a local 
neighborhood are utilized, and the presence of 
noise can significantly complicate the 
estimation of surface properties like curvature 
and surface normals (Rusu & Cousins, 2011).  

 

 
Fig.6. Demonstrate the normal vectors in 3D models: (a) before, and (b) after removing noises 
 
The quality of extracted features such as 

PFH and FPFH (Sa et al., 2017; Zhao et al., 
2020), SHOT (Muja, Rusu, Bradski, & Lowe, 
2011), and VFH (Behley, Steinhage, & 
Cremers, 2012) is heavily dependent on the 
quality of the input data. In Zhao et al.'s (2020) 
study on detecting sweet peppers in a 
greenhouse environment, it was noted that the 
extraction of normal vectors is susceptible to 

noise from RGB-D sensors, leading to poor 
expression of surface curvature. Figure 6 
displays two 3D models alongside their 
respective surface normal vectors. In Figure 
6(b), the normal vectors in the 3D model are 
displayed after noise removal. As indicated, the 
normal vectors in Figure 6(b) appear more 
regular compared to those in Figure 6(a), which 
contains noisy points, and they more accurately 
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illustrate changes in surface curvature for sweet 
peppers. Therefore, the methods presented in 
this study can be utilized for preprocessing 
depth data in the robotic harvesting of 
agricultural products. Hence, the techniques 
proposed in this study can be employed for 
preprocessing depth data in robotic harvesting 
of agricultural products. 

 
Result of preprocessing 

Point cloud models consist of a large number 
of points, and using all of them for clustering 
may not result in optimal accuracy. To enhance 
clustering accuracy, data preprocessing was 

performed in this study. The Z-Score method 

was employed to eliminate outlier points, and 
data balancing was achieved by reducing 
samples based on the H color channel. Figure 7 
illustrates the reduction in the number of 
prototype points achieved by balancing each 
model, indicating a significant decrease in the 
number of points for the balanced models 
compared to the initial models. In addition, the 
silhouette coefficient values displayed in Figure 
7 demonstrate that including a higher number 
of points in the clustering model leads to lower 
clustering quality. 

 

 
Fig.7. The reduction in points and silhouette coefficient for each model after dataset balancing 

 
Results of PCA 

The scree plot for PCA applied to the data is 
presented in Figure 8. The plot reveals that in 
this particular model, dimensions have been 

reduced to five components. This resulted in a 
considerably reduced slope and a minimal 
increase in the variance. 
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Fig.8. The graphic of the number of main components compared to the compressed variance is 

explained 
 

Results of K-means clustering 
The K-means method was utilized as one of 

the unsupervised learning techniques in this 
study. The clustering quality was measured 
using the silhouette coefficient, and a human 
observer was employed to accurately identify 
sweet peppers. In Figure 7, the silhouette 
coefficient plot is depicted for five models, with 
the maximum value equal to 0.59 and the 
minimum value equal to 0.31. These values 
indicate that the K-means clustering algorithm 

was able to effectively differentiate between the 
two clusters examined in this study (pepper and 
other plant components). Figure 9 illustrates the 
silhouette coefficient diagram for a clustered 
model, where the horizontal axis represents the 
silhouette coefficient and the vertical axis 
shows the number of points in each cluster. The 
majority of the points on the graph fall within a 
range greater than zero, providing evidence for 
the successful clustering achieved using the K-
means algorithm. 

 

 
Fig.9. Silhouette analysis for K-means clustering on sample data with two cluster 

 
To evaluate the performance of the proposed 

method in detecting sweet peppers, Figures 10 
and 11 display the initial 3D model along with 
the number of detected sweet peppers. It is 
important to consider that the field of view for 
harvesting robots has limitations, and the 
harvesting operation can only be performed 
within a specific range. Therefore, in this study, 
if the target is located at the margins of the 
image, it is not included in the final count. 
Figure 10 shows the results of pepper counting 
for two models of orange pepper, while Figure 
11 shows the results for two models of yellow 
pepper. As demonstrated, the algorithm utilized 
in this study is capable of effectively 
differentiating pepper points from those 
belonging to branches and leaves in the 3D 

point cloud model. In the examined 3D models, 
all available peppers were successfully 
identified. However, it should be noted that 
some points belonging to branches and leaves 
were also classified as peppers. This may lead 
to errors when a harvesting robot encounters 
these points, and it may mistakenly treat 
branches and leaves as peppers. Figure 12 
demonstrates this issue. The presence of these 
misclassified points in the clustering process 
has resulted in a decrease in the silhouette 
coefficient value. It is worth mentioning that the 
quality of clustering may vary across different 
models depending on various environmental 
factors, such as fruit-leaf overlap, lighting 
conditions, leaf density, maturity level, and so 
on. In this study, 3D models were created using 
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the Kinect sensor without controlling these 
environmental conditions. Hence, the proposed 
algorithm is effective in tackling environmental 

challenges and can be employed in similar 
environments. 

 

 
Fig.10. The initial 3-D model (left), and identified orange peppers (right) used for human 

monitoring 
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Fig.11. Detection of yellow pepper for human monitoring: initial 3D model (top), and detected 

peppers (buttom) 

 

Table 3- The results of the human monitoring 

Cumulative 

variance 

Time 

(s) 

Detection 

accuracy (%) 

Number of 

identified 

sweet peppers 

Total number of 

sweet peppers 
Silhouette 

coefficient 
3-D model 

number 

50.76 37.36 100 9 9 0.59 1 
51.55 31.29 100 11 11 0.41 2 
54.92 34.85 100 4 4 0.44 3 
54.14 29.45 100 6 6 0.40 4 
54.83 30.67 100 8 8 0.40 5 
63.36 33.11 85.71 6 7 0.51 6 

66.16 32.62 87.5 7 8 0.46 7 

64.28 13.45 100 3 3 0.52 8 

65.97 32.12 100 5 5 0.44 9 

65.74 16.84 100 2 2 0.58 10 

60.2 46.64 90 9 10 0.44 11 

60 47.54 100 6 6 0.38 12 

60.78 20.12 100 4 4 0.48 13 

59.8 54.20 83.33 5 6 0.39 14 

60.30 50.66 80 8 10 0.35 15 

51.59 33.32 95.10 93 99 0.45 Average 
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Fig.12. Recognition of the points of the branches and leaves as sweet pepper 

 
To detect sweet peppers in complex 

environments, various techniques were 
employed, including noise removal, data 
balancing via color filtering, 3D feature 
extraction, PCA, and unsupervised K-means 
clustering. To assess the performance of the k-
means algorithm, the silhouette coefficient was 
utilized (as shown in Table 3). The maximum 
value of the silhouette coefficient was 0.59, 
while the minimum value was 0.35. Out of the 
99 peppers present in the point cloud models, 
93 peppers were detected. Finally, the average 
accuracy of human-supervised detection was 
found to be 95.10% for the sweet pepper 
dataset. The average execution time of the 
algorithm was determined to be 33.32 seconds. 
Comparable levels of accuracy to the results for 
sweet pepper detection have been reported in 
similar studies.  For example, (Zhao et al. 2020) 
used R-G filter and the Euclidean distance to 
detect color sweet pepper, and the accuracy of 
their human monitoring was 90.69%. In a study, 
(Sa et al. 2017) used PFH features to detect 
sweet peppers with 0.71% accuracy, considered 
acceptable because they used only 3D features, 
without incorporating any color features. Ning 
et al, (2022) achieved a precision of 91.84% in 
detecting sweet peppers using the YOLO-V4 
model. Nan et al, (2023) used the YOLOv5l 
model for detecting green sweet peppers and 
achieved a detection accuracy of 81%. 
Compared to supervised detection of colored 
sweet peppers (Doosti et al., 2023), the 
detection accuracy in this study increased from 

83.07% to 95.1%, mainly due to appropriate 
preprocessing applied to the point cloud, 
including reducing the sample size. The use of 
unsupervised learning algorithms in detecting 
agricultural products is prioritized over 
supervised learning algorithms. This is because, 
in supervised learning, changes in 
environmental conditions can affect the 
accuracy of detection and reduce it. In the 
detection of agricultural products, color 
supervision is mostly used, which can be 
influenced by changes in environmental 
lighting. Therefore, the superiority of 
unsupervised algorithms is due to the lack of 
need for supervision. Thus, these algorithms are 
more resistant to environmental changes, and 
their accuracy will be less affected. 

 
Conclusion 

Automatic detection and harvesting of sweet 
pepper is a challenging task in greenhouse 
cultivation due to the high density of branches 
and leaves, variations in lighting and 
environmental conditions, the presence of pests 
and diseases, and differing levels of maturity. 
In this study, a combination of geometric 
and color features using 3D models was used as 
a highly accurate method for detecting sweet 
peppers. The results showed that the algorithm 
used was capable of detecting sweet peppers 
with an accuracy of 95.1%. The algorithms 
used in this study can be used to detect other 
products with similar challenges such as green 
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sweet peppers, cucumbers, green apples, and 
generally any product that is geometrically 
different from other plant components. The 
authors aimed to investigate whether geometric 
features are capable of distinguishing fruit from 
other plant components in order to provide a 
solution for detecting green sweet peppers in 
future studies. As detecting green sweet 
peppers is also a challenging task, it is 
suggested that the detection of green sweet 
peppers based on local 3D descriptors be 
investigated in a separate study. 
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 نظارت  بدون یادگیری و نقطه سریع ویژگی هیستوگرام از استفاده  با  ایدلمه فلفل تشخیص

 
 1گلزاریان محمودرضا ،1خانی آق محمدحسین ،*1ایرانی  دوستی امید 

 31/03/1402تاریخ دریافت:  
 05/1402/ 25تاریخ پذیرش: 

 چکیده

 پیشترفت با. استت رر بهره  افزایش ر  برداشتت  ها هزینه  کاهش  ستالم   میلاه  تلالید  برا  ملاثر ر   مهم فرآیند   کشتارری   محصتلات   رباتیک  برداشتت
 ای یکی  عنلاانبه  ا دلمه فلدل  برداشتتت  حال   ای  با.  استتت گستتارش  حال در  دربعد   اطلاعا   جا به  بعد ستته  اطلاعا   ای  استتاداده  ماشتتی   بینایی

 بدرن ماشتی  بینایی  الگلاریام یک  تلاستعه  مطالعه ای   هدف. استت  ملااجه  هاییچالش با  دربعد   ستنستلارها   پایی  دقت  دلیل به  ا  گلخانه  محصتلات 
 رنگی ها ریژگی ر ( FPFH -ستتری  نقطه ریژگی هیستتالاگرا ) هندستتی ها ریژگی ای ترکیبی ای استتاداده با  رنگی  دلمه فلدل  تشتتخی  برا   نظار 

(HSV )حستگر  ای  استاداده با  عمق تصتاریر. استت v2-Kinect  رنگ  ر   هندستی  ها ریژگی  استاخرا  ای  پس.  استت  شتده  بایستای   بعد سته مدل ر   دریافت 
 برا ( PCA) اصتتلی  مؤلده  تحلیل.  شتتدند  پردایشپیش نلایزها   کردن  فیلار  برا  score-Z  معیار  اعمال با ر  گیر نملانه ییر ررش  ای  استتاداده با  هاداده

 ضتری . شتد اعمال  هاداده  به  رنگ   ریژگی سته ر   هندستی  ریژگی  شتش  ای  استاداده با  means-k  بند خلاشته  مدل  ر   شتد  استاداده هاریژگی  ابعاد  کاهش
 است. ا دلمه فلدل تشخی  به قادر درصد 10/95 دقت با الگلاریام که داد نشان انسانی ارییابی ر  شد اساداده بند خلاشه کیدیت ارییابی برا  سیللائت
 

 means-K  نقطه سری  ریژگی هیسالاگرا   ا دلمه فلدل  ماشی  بینایی  رباتیک برداشت های کلیدی: واژه
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