

Research Article

Vol. 15, No. 3, 2025, p. 319-335

Detection and Classification of Some Diseases of Tomato Crops Using Transfer

Learning

I. Ahmadi 1*

1- Department of Genetics and Plant Production Engineering, Institute of Agriculture, Water, Food and Nutraceuticals,
Isf. C., Islamic Azad University, Isfahan, Iran
(*- Corresponding Author Email: imanahmadi1358@iau.ac.ir)

How to cite this article:
Ahmadi, I. (2025). Detection and Classification of Some Diseases of Tomato Crops Using
Transfer Learning. Journal of Agricultural Machinery, 15(3), 319-335.
https://doi.org/10.22067/jam.2024.88500.1258

Received: 14 June 2024
Revised: 13 July 2024

Accepted: 29 July 2024
Available Online: 31 May 2025

Abstract

In the context of plant diseases, the selection of appropriate preventive measures, such as correct pesticide
application, is only possible when plant diseases have been diagnosed quickly and accurately. In this study, a
transfer learning model based on the pre-trained EfficientNet model was implemented to detect and classify
some diseases in tomato crops, using an augmented training dataset of 2340 images of tomato plants. The study's
findings indicate that during the model's validation phase, the rate of image categorization was roughly 5 fps
(frames per second), which makes sense for a deep learning model operating on a laptop computer equipped with
a standard CPU. Furthermore, the model was learned well because increasing the number of epochs no longer
improved its accuracy. After all, the curves of the train and test accuracies, as well as the losses versus epoch
numbers, remained largely horizontal for epoch numbers greater than 20. Notably, the highest coefficient of
variation across these four cases was only 7%. Furthermore, the cells of the primary diagonal of the confusion
matrix were filled with larger numbers in comparison with the values of the other cells; precisely, 88.8%, 7.7%,
and 3.3% of the remaining cells of the matrix (cells of the primary diagonal excluded) were filled with 0, 1, and
2, respectively. The model's performance metrics are: sensitivity 85%, specificity 98%, precision 86%, F1-score
84%, and accuracy 85%.

Keywords: Confusion Matrix, EfficientNet Model, Model Accuracy

Introduction1

In the context of plant diseases, the
selection of appropriate preventive measures,
such as correct pesticide application, is only
possible when plant diseases have been
diagnosed quickly and accurately. If plant
diseases are not controlled on time, a
significant reduction in crop quantity and
quality will result.

One of the methods used to detect plant

©2025 The author(s). This is an open
access article distributed under Creative
Commons Attribution 4.0 International
License (CC BY 4.0).

 https://doi.org/10.22067/jam.2024.88500.1258

diseases is through human observation of
disease symptoms on different parts of the
plant. Since different diseases may have
similar symptoms, an amateur inspector may
falsely diagnose a disease, and the wrong
chemical may be chosen to cure the disease
(Shah, Harshadkumar, Prajapati, & Dabhi,
2016); however, machine learning (ML)
techniques such as feature extraction and
classification can help an amateur inspector in
this regard (Jena, Sethy, & Behera, 2021). Ali,
Bachik, Muhadi, Tuan Yusof, and Gomes
(2019) highlighted that utilizing machine
learning techniques to evaluate plant diseases
leads to enhanced precision, reliability, and
accuracy. The inability of machine learning

iD

Journal of Agricultural Machinery

Homepage: https://jame.um.ac.ir

mailto:imanahmadi1358@iau.ac.ir
https://doi.org/10.22067/jam.2024.88500.1258
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.22067/jam.2024.88500.1258
https://orcid.org/0000-0003-3492-9443
https://jame.um.ac.ir/

320 Journal of Agricultural Machinery Vol. 15, No. 3, Fall, 2025

techniques to reliably detect subtle indications
of plant illnesses and early-stage disease
detection, and the requirement for complex
and high-resolution images, are drawbacks of
using feature extraction approaches for plant
disease diagnosis (Anjna, Sood, & Singh,
2020; Genaev et al., 2021).

Using deep learning (DL) techniques such
as Convolutional Neural Networks (CNNs)
and Deep Belief Networks (DBNs) can
overcome the limitations of traditional ML
methods (Khan, Khan, Albattah, & Qamar,
2021; Liu & Wang, 2021); however, DL
models need high computational power, a
limiting factor for some applications.

Another Artificial Intelligence (AI) model
that has been recently used for plant disease
detection is a model based on the transfer
learning (TL) concept. In the TL paradigm, a
pre-trained DL model is used to develop a
custom model on another dataset that has the
same function as the first pre-trained model. In
other words, TL entails refining pre-trained
models using a custom dataset to boost the
performance of a model developed specifically
for that dataset.

The accuracies obtained in studies
conducted on plant disease identification using
AI methods range from above 50% to nearly
100%. For example, Burhan, Minhas, Tariq,
and Nabeel Hassan (2020) performed a study
on five different modern DL models to
identify rice diseases and obtained accuracies
of 70.42%, 73.6%, 51.99%, 61.6%, and
87.79% on VGG16, VGG19, ResNet50,
ResNet50v2, and ResNet101v2 models,
respectively. Agarwal, Singh, Arjaria, Sinha,
and Gupta (2020) carried out a study to
classify 9 groups of tomato diseases and
obtained accuracy values of 63.7%, 63.4%,
and 90% using InceptionV3, MobileNet, and
VGG16 models, respectively. Batool, Hyder,
Rahim, Waheed, and Asghar (2020) aimed to
detect and classify tomato leaf diseases using a
training dataset of 450 images. Results showed
that among the models used, the AlexNet
model was superior, with an accuracy of
76.1%. Kirola et al. (2022) compared the
performance of five ML models and one DL

model for plant disease prediction. They stated
that the accuracies of ML models such as LR,
SVM, KNN, RF, and NB were 71.89%,
75.76%, 82.17%, 97.12%, and 81.12%,
respectively; while the accuracy of the deep
learning CNN model was 98.43%. Bharali,
Bhuyan, and Boruah (2019) developed a new
architecture called plant disease detection
neural network (PDDNN). An 86% accuracy
was obtained for detecting diseases of maize,
grape, apple, and tomato plants using this
architecture. Balaji et al. (2023) utilized an
enhanced CNN technique to detect rice
diseases. For the TL, CNN+TL, ANN, and
ECNN+GA models, they attained accuracies
of 80%, 85%, 90%, and 95%, respectively. A
fully connected CNN method was employed
by Upadhyay and Kumar (2022) to identify
three rice illnesses. Four thousand photos of
each sick leaf and four thousand photos of
healthy rice leaves were used to train the
model. This study's accuracy rate was 99.7%.

To sum up, the development of a deep
learning model for diagnosing some groups of
tomato diseases, in order to assist in the curing
process of diseased plants, is the main
challenge followed in this study. Another
challenge of this study is the lack of modern
hardware resources required for running a
deep learning model. In this study, it is
necessary to run the model on a regular
computer with a CPU instead of a modern
GPU. It appears that the only deep learning
model that may satisfy these criteria is the
transfer learning (TL) model. As a result, a TL
model based on the EfficientNet pre-trained
model was implemented to distinguish
between healthy tomatoes and nine groups of
diseased plants. The original small custom
dataset contained 320 images of tomato plants,
divided into 234 images for the training
dataset and 86 images for the test dataset;
however, the training dataset was augmented,
and the final number of images in it was
increased to 2340 images. The following
justifies the use of EfficientNet as a pre-
trained model: EfficientNet emerges as a
superior model for image classification tasks
due to its efficient network structure and

Ahmadi, Detection and Classification of Some Diseases of Tomato Crops … 321

ingenious mechanisms. It utilizes a triplet
attention mechanism to enhance feature
expression and acquire channel and spatial
attention information, leading to improved
accuracy. Additionally, the model enhances
transfer learning by loading pre-trained
parameters, accelerating convergence, and
reducing training time, resulting in strong
robustness and generalization ability. These
specifications make EfficientNet a powerful
choice for image classification tasks,
surpassing other models in accuracy and
efficiency (Huang, Su, Wu, & Chen, 2023).

Materials and Methods

Preparation of raw images

Nine predominant diseases of the tomato
plant (Solanum lycopersicum) along with
healthy crops, were considered as targets for
diagnosis. The names of these diseases served
as the classifier groups’ names: Anthracnose,
Bacterial_Speck, Blossom_End_Rot,
Buckeye_Rot, Damping_Off, Gray_Wall,
Healthy_Tomato, Leaf_Mold,
Southern_Blight, and Tomato_Pith_Necrosis.
Some of the pictures belonging to each group
were considered for developing the model.
While the total number of images was 2426,
they were divided into 2340 pictures in the
train folder and 86 pictures in the test folder.
The exact number of pictures in the train and
test datasets of each classifier group are as
follows: Anthracnose (300, 11),
Bacterial_Speck (170, 6), Blossom_End_Rot
(350, 13), Buckeye_Rot (200, 7),
Damping_Off (220, 9), Gray_Wall (120, 5),
Healthy Tomato (230, 10), Leaf_Mold (320,
11), Southern_Blight (140, 4), and
Tomato_Pith_Necrosis (290, 10). The first
number in the parentheses indicates the
number of images in the training dataset for
that classifier group, while the second number
indicates the number of images in the test
dataset. Images of the "train" folder will be
used for training the model (i.e. changing
weights of the model in the convergence
direction so that the model predictions on train
images match reality), while the unseen
images of the "test" folder will be used to test

the goodness of those weights for diagnosing
tomato diseases.

Model development procedure

Development of the model was conducted
using code written in the PyCharm
environment, using the PyTorch package of
the Python programming language. The codes
are attached to this paper as an appendix.
Some functions in the PyTorch package make
it suitable for creating models based on the
transfer learning concept.

The architecture of the TL model to classify
10 groups of tomato diseases is shown in
Table 1.

As shown, the parameters of the feature
extraction section are not trainable during the
model’s training process, and only the
parameters of the classifier section are
trainable. This leads to a significant decrease
in the model’s training time. Numerically, the
number of trainable parameters decreased
from 4,020,358 parameters of the EfficientNet
model to 12,810 parameters of the model
based on the transfer learning concept. This
feature of the TL model allows it to run
efficiently on a regular computer with a
standard CPU in a reasonable time.

Other informative data about the TL model
are summarized in Table 2.
Model evaluation criteria

Sensitivity (Recall): This criterion
measures how well a model can detect positive
instances; in mathematical terms, it can be
calculated using the formula:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑅𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (1)

Where 𝑇𝑃 is the number of instances that
are truly predicted as positive, and 𝐹𝑁 is the
number of instances that are falsely predicted
as negative.

Specificity: This criterion measures the
model’s ability to predict true negatives in
each of the available categories. In
mathematical terms, it can be calculated using
the formula:

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 (2)

Table 1- The architecture of the TL model based on the EfficientNet pre-trained model

===

Layer (type (var_name)) Input Shape Output Shape Param # Trainable

===

EfficientNet (EfficientNet) [32, 3, 224, 224] [32, 10] -- Partial

├─Sequential (features) [32, 3, 224, 224] [32, 1280, 7, 7] -- False

│ └─Conv2dNormActivation (0) [32, 3, 224, 224] [32, 32, 112, 112] -- False

│ │ └─Conv2d (0) [32, 3, 224, 224] [32, 32, 112, 112] (864) False

│ │ └─BatchNorm2d (1) [32, 32, 112, 112] [32, 32, 112, 112] (64) False

│ │ └─SiLU (2) [32, 32, 112, 112] [32, 32, 112, 112] -- --

│ └─Sequential (1) [32, 32, 112, 112] [32, 16, 112, 112] -- False

│ │ └─MBConv (0) [32, 32, 112, 112] [32, 16, 112, 112] (1,448) False

│ └─Sequential (2) [32, 16, 112, 112] [32, 24, 56, 56] -- False

│ │ └─MBConv (0) [32, 16, 112, 112] [32, 24, 56, 56] (6,004) False

│ │ └─MBConv (1) [32, 24, 56, 56] [32, 24, 56, 56] (10,710) False

│ └─Sequential (3) [32, 24, 56, 56] [32, 40, 28, 28] -- False

│ │ └─MBConv (0) [32, 24, 56, 56] [32, 40, 28, 28] (15,350) False

│ │ └─MBConv (1) [32, 40, 28, 28] [32, 40, 28, 28] (31,290) False

│ └─Sequential (4) [32, 40, 28, 28] [32, 80, 14, 14] -- False

│ │ └─MBConv (0) [32, 40, 28, 28] [32, 80, 14, 14] (37,130) False

│ │ └─MBConv (1) [32, 80, 14, 14] [32, 80, 14, 14] (102,900) False

│ │ └─MBConv (2) [32, 80, 14, 14] [32, 80, 14, 14] (102,900) False

│ └─Sequential (5) [32, 80, 14, 14] [32, 112, 14, 14] -- False

│ │ └─MBConv (0) [32, 80, 14, 14] [32, 112, 14, 14] (126,004) False

│ │ └─MBConv (1) [32, 112, 14, 14] [32, 112, 14, 14] (208,572) False

│ │ └─MBConv (2) [32, 112, 14, 14] [32, 112, 14, 14] (208,572) False

│ └─Sequential (6) [32, 112, 14, 14] [32, 192, 7, 7] -- False

│ │ └─MBConv (0) [32, 112, 14, 14] [32, 192, 7, 7] (262,492) False

│ │ └─MBConv (1) [32, 192, 7, 7] [32, 192, 7, 7] (587,952) False

│ │ └─MBConv (2) [32, 192, 7, 7] [32, 192, 7, 7] (587,952) False

│ │ └─MBConv (3) [32, 192, 7, 7] [32, 192, 7, 7] (587,952) False

│ └─Sequential (7) [32, 192, 7, 7] [32, 320, 7, 7] -- False

│ │ └─MBConv (0) [32, 192, 7, 7] [32, 320, 7, 7] (717,232) False

│ └─Conv2dNormActivation (8) [32, 320, 7, 7] [32, 1280, 7, 7] -- False

│ │ └─Conv2d (0) [32, 320, 7, 7] [32, 1280, 7, 7] (409,600) False

│ │ └─BatchNorm2d (1) [32, 1280, 7, 7] [32, 1280, 7, 7] (2,560) False

│ │ └─SiLU (2) [32, 1280, 7, 7] [32, 1280, 7, 7] -- --

├─AdaptiveAvgPool2d (avgpool) [32, 1280, 7, 7] [32, 1280, 1, 1] -- --

├─Sequential (classifier) [32, 1280] [32, 10] -- True

│ └─Dropout (0) [32, 1280] [32, 1280] -- --

│ └─Linear (1) [32, 1280] [32, 10] 12,810 True

===

Total params: 4,020,358

Trainable params: 12,810

Non-trainable params: 4,007,548

Total mult-adds (Units.GIGABYTES): 12.31

===

Input size (MB): 19.27

Forward/backward pass size (MB): 3452.09

Params size (MB): 16.08

Estimated Total Size (MB): 3487.44

===

Table 2- Complementary information about the TL

model

Parameter Setting

Training epoch 30

Batch size 32

optimizer Adam

Learning rate 0.001

Loss function Cross-Entropy

where 𝑇𝑁 is the number of instances that

are truly predicted as negative, and 𝐹𝑃 is the
number of instances that are falsely predicted

as positive.
Precision: This criterion measures the ratio

of the number of instances that are predicted as
true positives to the total number of instances
predicted as positive. In mathematical terms, it
can be calculated using the formula:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3)

F1 score: The F1 score is calculated by
taking the harmonic average of recall and
precision. In mathematical terms, we have:

Ahmadi, Detection and Classification of Some Diseases of Tomato Crops … 323

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

If either precision or recall is zero, then the
F1 score will be zero, but the arithmetic
average of precision and recall will be a
number greater than zero.

Accuracy: This criterion measures the ratio
of the number of true predictions made by the
model to the total number of predictions. In
mathematical terms, we have:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ (𝑇𝑃𝑖)𝑛

𝑖=1

∑ (𝑇𝑃𝑖+𝐹𝑃𝑖)𝑛
𝑖=1

 (5)

Where n is the number of classes; in this
study, n is 10. During model training, this
criterion was calculated after each epoch (there
are 30 epochs during model training in this
study), and then accuracy and loss values were
charted against the corresponding epoch
number. These charts can be used to be sure
about the number of epochs for model
training; in other words, if the curve of
accuracy or loss versus epoch number remains
horizontal for a few epochs, it is an indication
for the completion of the model’s training
phase.

Confusion matrix: To obtain a complete
understanding of where a false prediction has
taken place, and with which group the
prediction has been confused, a confusion

matrix will be used. In this paper, a 10 × 10
confusion matrix was developed to show the
location of false tomato disease predictions. In
a confusion matrix, the greater the
concentration of large numbers in the cells of
the main diagonal of the matrix (the more
zeros or small numbers in the other cells of the
matrix), the better. The values of TP, FP, FN,
and TN can be obtained from the confusion
matrix. The values of the cells located on the
main diagonal of the matrix comprise the TP
values. If the TP value of each class is
subtracted from the sum of cells for the
corresponding column, the FP value for that
class will result. On the other hand, if the TP
value of each class is subtracted from the sum
of the cells for the corresponding row, the FN
value of that class will be obtained. Finally,
the TN values can be obtained by subtracting
the sum of the TP, FP, and FN values from the
number of pictures in the test dataset.

Results and Discussion

Accuracy values versus corresponding
epoch numbers: Figure 1 shows the train and
test accuracies, as well as the losses of the
model versus the corresponding epoch
numbers.

Fig. 1. Train and test losses and accuracies versus corresponding epoch number

The first point inferred from Figure 1 is that because the curves of train and test accuracies

324 Journal of Agricultural Machinery Vol. 15, No. 3, Fall, 2025

have been approximately horizontal for epoch
numbers greater than 20, the model has
learned well, and increasing the epoch number
cannot further increase model accuracy.
Numerically, by recording values of model
accuracies and losses in the training and
testing phases for epoch numbers greater than
20, the worst coefficient of variation for these
four cases was 7%. Another point that can be

obtained from this chart is that since the
distance between train and test accuracies is
about 10%, and this situation has taken place
for train accuracies near 95%, therefore, the
model shows neither signs of under fitting nor
over fitting.

Confusion matrix of the test instances:
Figure 2 shows the confusion matrix obtained
for the 86 images in the test dataset.

Fig. 2. Confusion matrix obtained in this study

This picture presents a matrix of real
(ground truth) labels versus predicted ones. As
shown, the elements along the primary
diagonal of the matrix are filled with larger
values compared to those in the other cells.
The values of the primary diagonal of the
matrix comprise the number of images in each
disease's category that were predicted truly as
positive; in other words, these values are the
𝑇𝑃 values of classes. The 𝐹𝑃, 𝑇𝑁, and 𝐹𝑁
values can be obtained from this matrix, too.
Table 3 shows 𝑇𝑃, 𝐹𝑃, 𝑇𝑁, and 𝐹𝑁 values of
each category of tomato diseases considered in
this study:

Calculation of sensitivity (recall),
specificity, precision, F1 score, and
accuracy of the model: The values presented
in Table 3 can be used to obtain sensitivity
(recall), specificity, precision, F1 score, and
accuracy of the model. Table 4 shows the
calculated values of the above-mentioned
criteria.

The criteria values shown in Table 4 were
calculated for each category of tomato
diseases. To obtain corresponding criteria for
the model, regular or weighted averaging can
be carried out. Table 5 shows the sensitivity
(recall), specificity, precision, and F1 score of

Ahmadi, Detection and Classification of Some Diseases of Tomato Crops … 325

the model.

Table 3- Suitable data obtained from the confusion matrix

Disease category 𝑻𝑷 𝑭𝑷 𝑭𝑵 𝑻𝑵

Anthracnose 7 1 4 74

Bacterial Speck 6 2 0 78

Blossom_End_Rot 13 4 0 69

Buckeye Rot 3 0 4 79

Damping_Off 8 0 1 77

Gray Wall 4 1 1 80

Healthy Tomato 10 1 0 75

Leaf_Mold 10 1 1 74

Southern Blight 3 0 1 82

Tomato_Pith_Necrosis 9 3 1 73

Table 4- Calculated values of sensitivity (recall), specificity, precision, and F1 score

Disease category Sensitivity (recall) Specificity Precision F1 score

Anthracnose 0.64 0.99 0.88 0.74

Bacterial Speck 1 0.98 0.75 0.86

Blossom_End_Rot 1 0.95 0.76 0.86

Buckeye Rot 0.43 1 1 0.6

Damping_Off 0.89 1 1 0.94

Gray Wall 0.8 0.99 0.8 0.8

Healthy Tomato 1 0.99 0.91 0.95

Leaf_Mold 0.91 0.99 0.91 0.91

Southern Blight 0.75 1 1 0.86

Tomato_Pith_Necrosis 0.9 0.96 0.75 0.82

Table 5- Sensitivity (recall), specificity, precision, and F1 score of the model calculated from regular and weighted

averaging

Average Sensitivity (recall) Specificity Precision F1 score

Regular 0.832 0.985 0.876 0.834

Weighted 0.85 0.982 0.868 0.841

The accuracy of the model was obtained

from the formula of 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

∑ (𝑇𝑃𝑖)10

𝑖=1

∑ (𝑇𝑃𝑖+𝐹𝑃𝑖)10
𝑖=1

=
73

86
= 0.85.

To assess the performance of the model
visually, model predictions on some tomato
images were considered. Figure 3 shows the
predictions of the model on twenty randomly
selected images in the test dataset.

Three acronyms are displayed on top of
each image: Pred, Prob, and RPD. Pred is the
acronym for prediction and shows the
predicted group of the image. RPD is the
acronym for real parent directory and shows
the correct directory that the image belongs to.
Prob is the acronym for probability and
presents the probability value that the image
belongs to the predicted group. In other words,

the classifying algorithm calculates ten
probabilities for each image that represent the
belonging probabilities of the image to each of
the tomato disease groups, and declares the
tomato disease group with the highest
probability value as the image’s predicted
group. As shown in Fig. 3, 3 out of 20
predictions were incorrect, which indicates the
error rate of 15% (i.e. the accuracy of 0.85).
On the other hand, there is a trade-off between
the performance of a machine learning method
and the time spent or computational resources
devoted to training the model. Although the
time spent training the model in this study was
about 4.5 hours, which is high, the model was
trained on a computer without a GPU.
Additionally, it took just 16 seconds to classify
86 images from the test dataset during the
model's validation phase.

326 Journal of Agricultural Machinery Vol. 15, No. 3, Fall, 2025

Ahmadi, Detection and Classification of Some Diseases of Tomato Crops … 327

Fig. 3. Predictions of the model on some random images of tomato plants selected from the test dataset

This means that the model performed well
during validation, achieving an image
classification rate of about 5 frames per second
(fps). Furthermore, the model's accuracy was
comparable to some of the findings made by
other researchers (Burhan et al., 2020; Batool
et al., 2020); however, in some similar studies,
higher accuracies were obtained (Jasim & Al-
Tuwaijari, 2020; Guerrero-Ibanez & Reyes-
Munoz, 2023; Ahmed & Yadav, 2023; Zhao,
Peng, Liu, & Wu, 2021). To explain the
observed differences, it should be noted that in
the studies conducted by Jasim and Al-
Tuwaijari (2020) and Guerrero-Ibanez and
Reyes-Munoz (2023), they reached accuracies

higher than 98% by training complete CNN
models, instead of transferring the weights of a
pre-trained model to a TL model and only
training the classifier section of the model. On
the other hand, in the studies conducted by
Zhao et al. (2021), and Ahmed and Yadav
(2023), more images capturing only the leaves
of plants were used to train the model. This
differs from the proportion of images
examined in this study. Therefore, it is
necessary to consider all the conditions
surrounding a model and not focus on a single
criterion in order to have a fair judgment about
the model’s performance.

328 Journal of Agricultural Machinery Vol. 15, No. 3, Fall, 2025

Conclusion

In conclusion, in this study, a
computationally inexpensive TL model trained
on a dataset containing a mixture of images
such as leaf, fruit, and stem was used to
discriminate between healthy tomatoes and
nine groups of diseased plants. According to
the obtained results, the model's overall

performance metrics are: sensitivity 85%,
specificity 98%, precision 86%, F1-score 84%,
and accuracy 85%, which is acceptable.

Conflict of Interest: The author declares

no competing interests.

References

1. Agarwal, M., Singh, A., Arjaria, S., Sinha, A., & Gupta S. T. (2020). Tomato leaf disease
detection using convolution neural network. Procedia Computer Science, 167, 293-301.
https://doi.org/10.1016/j.procs.2020.03.225

2. Ahmed, I., & Yadav, P. K. (2023). A systematic analysis of machine learning and deep
learning based approaches for identifying and diagnosing plant diseases. Sustainable
Operations and Computers, 4, 96-104. https://doi.org/10.1016/j.susoc.2023.03.001

3. Ali, M. M., Bachik, N. A., Muhadi, N. A., Tuan Yusof, T. N., & Gomes, C. (2019).
Nondestructive techniques of detecting plant diseases: A review. Physiological and Molecular
Plant Pathology, 108, 101426. https://doi.org/10.1016/j.pmpp.2019.101426

4. Anjna, Sood, M., & Singh, P. K. (2020). Hybrid system for detection and classification of plant
disease using qualitative texture features analysis. Procedia Computer Science, 167, 1056-
1065. https://doi.org/10.1016/j.procs.2020.03.404

5. Balaji, V., Anushkannan, N. K., Narahari, Sujatha Canavoy, Rattan, Punam, Verma, Devvret,
Awasthi, Deepak Kumar, Pandian, A. Anbarasa, Veeramanickam, M. R. M., Mulat, & Molla
Bayih (2023). Deep transfer learning technique for multimodal disease classification in plant
images. Contrast Media & Molecular Imaging, 5644727.
https://doi.org/10.1155/2023/5644727

6. Batool, A., Hyder, S. B., Rahim, A., Waheed, N., & Asghar, M.A. (2020). Classification and
identification of tomato leaf disease using deep neural network. International Conference on
Engineering and Emerging Technologies (ICEET).
https://doi.org/10.1109/ICEET48479.2020.9048207

7. Burhan, S. A., Minhas, D. S., Tariq, D. A., & Nabeel, H. M. (2020). Comparative study of deep
learning algorithms for disease and pest detection in rice crops. 12th International Conference
on Electronics, Computers and Artificial Intelligence (ECAI).
https://doi.org/10.1109/ECAI50035.2020.9223239

8. Genaev, M. A., Skolotneva, E. S., Gultyaeva, E. I., Orlova, E. A., Bechtold, N. P., &
Afonnikov, D. A. (2021). Image-based wheat fungi diseases identification by deep learning.
Plants, 10(8), 1-21. https://doi.org/10.3390/plants10081500

9. Guerrero-Ibanez, A., & Reyes-Munoz, A. (2023). Monitoring tomato leaf disease through
convolutional neural networks. Electron, 12(1), 1-15.
https://doi.org/10.3390/electronics12010229

10. Bharali, P., Bhuyan, C., & Boruah, A. (2019). Plant Disease Detection by Leaf Image
Classification Using Convolutional Neural Network. In: Gani, A., Das, P., Kharb, L., Chahal,
D. (eds) Information, Communication and Computing Technology. ICICCT 2019.
Communications in Computer and Information Science, vol 1025. Springer, Singapore.
https://doi.org/10.1007/978-981-15-1384-8_16

11. Huang, Z., Su, L., Wu, J., & Chen, Y. (2023). Rock Image Classification Based on EfficientNet
and Triplet Attention Mechanism. Applied Science Letters, 13, 3180.

https://doi.org/10.1016/j.procs.2020.03.225
https://doi.org/10.1016/j.susoc.2023.03.001
https://doi.org/10.1016/j.pmpp.2019.101426
https://doi.org/10.1016/j.procs.2020.03.404
https://doi.org/10.1155/2023/5644727
https://doi.org/10.1109/ICEET48479.2020.9048207
https://doi.org/10.1109/ECAI50035.2020.9223239
https://doi.org/10.3390/plants10081500
https://doi.org/10.3390/electronics12010229
https://doi.org/10.1007/978-981-15-1384-8_16

Ahmadi, Detection and Classification of Some Diseases of Tomato Crops … 329

https://doi.org/10.3390/app13053180
12. Jasim, M. A., & Al-Tuwaijari, J. M. (2020). Plant leaf diseases detection and classification

using image processing and deep learning techniques. International Conference on Computer
Science and Software Engineering. https://doi.org/10.1109/CSASE48920.2020.9142097

13. Jena, L., Sethy, P. K., & Behera, S. K. (2021). Identification of wheat grain using geometrical
feature and machine learning. In: 2nd international conference for emerging technology
(INCET) (pp. 1_6).

14. Khan, R. U., Khan, K., Albattah, W., & Qamar, A.M. (2021). Image-based detection of plant
diseases: from classical machine learning to deep learning journey. Wireless Communications
and Mobile Computing, 1-13. https://doi.org/10.1155/2021/5541859

15. Kirola, M., Joshi, K., Chaudhary, S., Singh, N., Anandaram, H., & Gupta, A. (2022). Plants
diseases prediction framework: a imagebased system using deep learning. Proc IEEE World
Conf Appl Intell Comput. https://doi.org/10.1109/AIC55036.2022.9848899

16. Liu, J., & Wang, X. (2021). Plant diseases and pests detection based on deep learning: a
review. Plant Methods, 17(1), 1-18. https://doi.org/10.1186/s13007-021-00722-9

17. Shah, J. P., Harshadkumar, B., Prajapati, V. K., & Dabhi. (2016). A survey on detection and
classification of rice plant diseases. In: IEEE international conference on current trends in
advanced computing (ICCTAC).

18. Upadhyay, S. K., & Kumar, A. (2022). A novel approach for rice plant diseases classification
with deep convolutional neural network. International Journal of Information Technology,
14(1):185-99. https://doi.org/10.1007/s41870-021-00817-5

19. Zhao, S., Peng, Y., Liu, J., & Wu, S. (2021). Tomato leaf disease diagnosis based on improved
convolution neural network by attention module. Agriculture,
https://doi.org/10.3390/agriculture11070651

Appendix: Python codes used in this study1:

This script aims to create augmented images from one image to create a larger dataset for our transfer learning

model

import PIL
import torch
from PIL import Image
from pathlib import Path
import matplotlib.pyplot as plt
import numpy as np
import sys
import torchvision.transforms as T
import os

#torch.transforms

#grayscale
grayscale_transform = T.Grayscale(3)

#random rotation
random_rotation_transformation_45 = T.RandomRotation(45)
random_rotation_transformation_85 = T.RandomRotation(85)

1- The codes were developed based on the materials presented in the following websites:

https://anushsom.medium.com/image-augmentation-for-creating-datasets-using-pytorch-for-dummies-by-a-dummy-

a7c2b08c5bcb

https://www.learnpytorch.io/06_pytorch_transfer_learning/

https://doi.org/10.3390/app13053180
https://doi.org/10.1109/CSASE48920.2020.9142097
https://doi.org/10.1155/2021/5541859
https://doi.org/10.1109/AIC55036.2022.9848899
https://doi.org/10.1186/s13007-021-00722-9
https://doi.org/10.1007/s41870-021-00817-5
https://doi.org/10.3390/agriculture11070651

330 Journal of Agricultural Machinery Vol. 15, No. 3, Fall, 2025

#Gausian Blur
gausian_blur_transformation_13 = T.GaussianBlur(kernel_size = (7,13), sigma = (6 , 9))
gausian_blur_transformation_56 = T.GaussianBlur(kernel_size = (7,13), sigma = (5 , 8))

#Gausian Noise
def addnoise(input_image, noise_factor = 0.3):
 inputs = T.ToTensor()(input_image)
 noisy = inputs + torch.rand_like(inputs) * noise_factor
 noisy = torch.clip (noisy,0,1.)
 output_image = T.ToPILImage()
 image = output_image(noisy)
 return image

#Colour Jitter
colour_jitter_transformation_1 = T.ColorJitter(brightness=(0.5,1.5),contrast=(3),saturation=(0.3,1.5),hue=(-0.1,0.1))
colour_jitter_transformation_3 = T.ColorJitter(brightness=(0.5,1.5),contrast=(2),saturation=(1.4),hue=(-0.1,0.5))

#Random invert
random_invert_transform = T.RandomInvert()

#Main function that calls all the above functions to create 9 augmented images from one image

def augment_image(img_path):

 #orig_image
 orig_img = Image.open(Path(img_path))

 #grayscale

 grayscaled_image=grayscale_transform(orig_img)
 #grayscaled_image.show()

 #random rotation
 random_rotation_transformation_45_image=random_rotation_transformation_45(orig_img)
 #random_rotation_transformation_45_image.show()

 random_rotation_transformation_85_image=random_rotation_transformation_85(orig_img)
 #random_rotation_transformation_85_image.show()

 #Gausian Blur
 gausian_blurred_image_13_image = gausian_blur_transformation_13(orig_img)
 #gausian_blurred_image_13_image.show()

 gausian_blurred_image_56_image = gausian_blur_transformation_56(orig_img)
 #gausian_blurred_image_56_image.show()

 #Gausian Noise
 gausian_image_3 = addnoise(orig_img)
 #gausian_image_3.show()

 gausian_image_9 = addnoise(orig_img,0.9)
 #gausian_image_9.show()

 #Color Jitter
 colour_jitter_image_1 = colour_jitter_transformation_1(orig_img)
 #colour_jitter_image_1.show()

 colour_jitter_image_3 = colour_jitter_transformation_3(orig_img)

Ahmadi, Detection and Classification of Some Diseases of Tomato Crops … 331

 #colour_jitter_image_3.show()

 return [orig_img,grayscaled_image,random_rotation_transformation_45_image,

random_rotation_transformation_85_image,gausian_blurred_image_13_image,gausian_blurred_image_56_image,gausi
an_image_3, gausian_image_9,colour_jitter_image_1, colour_jitter_image_3]

#augmented_images = augment_image(orig_img_path)

def creating_file_with_augmented_images(file_path_master_dataset,file_path_augmented_images):

 master_dataset_folder = file_path_master_dataset
 files_in_master_dataset = os.listdir(file_path_master_dataset)
 augmented_images_folder = file_path_augmented_images

 counter=0

 for element in files_in_master_dataset:
 os.mkdir(f"{augmented_images_folder}/{element}")
 images_in_folder= os.listdir(f"{master_dataset_folder}/{element}")
 counter = counter+1
 counter2 = 0
 for image in images_in_folder:
 counter
 required_images = augment_image(f"{master_dataset_folder}/{element}/{image}")
 counter2=counter2+1
 counter3 = 0
 for augmented_image in required_images:
 counter3 = counter3 +1
 augmented_image =

augmented_image.save(f"{augmented_images_folder}/{element}/{counter}_{counter2}_{counter3}_{image}")

"""images = augment_image("dog.png")

for element in images:
 element.show()"""

#augmented dataset path
augmented_dataset = "C:\\Users\\acer\\PycharmProjects\\pythonProject2\\augmented_tomato"

master dataset path
master_dataset = "C:\\Users\\acer\\PycharmProjects\\pythonProject2\\tomato"

run the program

creating_file_with_augmented_images(master_dataset,augmented_dataset)

This script aims to perform the main goal of the study i.e. tomato crop diseases classification

import torch
import torchvision
import matplotlib.pyplot as plt
from torch import nn
from torchvision import transforms
!pip install going_modular
import going_modular
try:
 from torchinfo import summary
except:
 print("[INFO] Couldn't find torchinfo... installing it.")

332 Journal of Agricultural Machinery Vol. 15, No. 3, Fall, 2025

 !pip3 install -q torchinfo
 from torchinfo import summary
try:
 from going_modular.going_modular import data_setup, engine
except:
 print("[INFO] Couldn't find going_modular scripts... downloading them from GitHub.")
 !git clone https://github.com/mrdbourke/pytorch-deep-learning
 !mv pytorch-deep-learning/going_modular .
 !rm -rf pytorch-deep-learning
 from going_modular.going_modular import data_setup, engine
device = "cuda" if torch.cuda.is_available() else "cpu"
device
import os
import zipfile
from pathlib import Path
import requests
data_path = Path("data/")
image_path = data_path / "tomato_diseases"
train_dir = image_path / "train"
test_dir = image_path / "test"
weights = torchvision.models.EfficientNet_B0_Weights.DEFAULT
auto_transforms = weights.transforms()
auto_transforms
train_dataloader, test_dataloader, class_names = data_setup.create_dataloaders(train_dir=train_dir,
 test_dir=test_dir,
 transform=auto_transforms,
 batch_size=32)
train_dataloader, test_dataloader, class_names
weights = torchvision.models.EfficientNet_B0_Weights.DEFAULT
model = torchvision.models.efficientnet_b0(weights=weights).to(device)
summary(model=model,
 input_size=(32, 3, 224, 224),
 col_names=["input_size", "output_size", "num_params", "trainable"],
 col_width=10,
 row_settings=["var_names"]
)
for param in model.features.parameters():
 param.requires_grad = False
torch.manual_seed(42)
torch.cuda.manual_seed(42)
output_shape = len(class_names)
model.classifier = torch.nn.Sequential(
 torch.nn.Dropout(p=0.2, inplace=True),
 torch.nn.Linear(in_features=1280,
 out_features=output_shape,
 bias=True)).to(device)
summary(model,
 input_size=(32, 3, 224, 224),
 verbose=0,
 col_names=["input_size", "output_size", "num_params", "trainable"],
 col_width=20,
 row_settings=["var_names"]
)
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
torch.manual_seed(42)
torch.cuda.manual_seed(42)
from timeit import default_timer as timer
start_time = timer()

Ahmadi, Detection and Classification of Some Diseases of Tomato Crops … 333

results = engine.train(model=model,
 train_dataloader=train_dataloader,
 test_dataloader=test_dataloader,
 optimizer=optimizer,
 loss_fn=loss_fn,
 epochs=5,
 device=device)
end_time = timer()
print(f"[INFO] Total training time: {end_time-start_time:.3f} seconds")
try:
 from helper_functions import plot_loss_curves
except:
 print("[INFO] Couldn't find helper_functions.py, downloading...")
 with open("helper_functions.py", "wb") as f:
 import requests
 request = requests.get("https://raw.githubusercontent.com/mrdbourke/pytorch-deep-

learning/main/helper_functions.py")
 f.write(request.content)
 from helper_functions import plot_loss_curves
plot_loss_curves(results)
from typing import List, Tuple
from pathlib import Path
def get_folder(dataset):
 parent = Path(dataset).parent
 if "." in parent.name:
 return str(parent.parent)
 return str(parent)
from PIL import Image
def pred_and_plot_image(model: torch.nn.Module,
 image_path: str,
 class_names: List[str],
 image_size: Tuple[int, int] = (224, 224),
 transform: torchvision.transforms = None,
 device: torch.device=device):
 img = Image.open(image_path)
 if transform is not None:
 image_transform = transform
 else:
 image_transform = transforms.Compose([
 transforms.Resize(image_size),
 transforms.ToTensor(),
 transforms.Normalize(mean=[0.485, 0.456, 0.406],
 std=[0.229, 0.224, 0.225]),
])
 model.to(device)
 model.eval()
 with torch.inference_mode():
 transformed_image = image_transform(img).unsqueeze(dim=0)
 target_image_pred = model(transformed_image.to(device))
 target_image_pred_probs = torch.softmax(target_image_pred, dim=1)
 target_image_pred_label = torch.argmax(target_image_pred_probs, dim=1)
 plt.figure()
 plt.imshow(img)
 plt.title(f"Pred: {class_names[target_image_pred_label]} | Prob: {target_image_pred_probs.max():.3f} | Real

Parent Directory: {get_folder(image_path)}")
 plt.axis(False);
import random
num_images_to_plot = 30
test_image_path_list = list(Path(test_dir).glob("*/*.jpg"))

334 Journal of Agricultural Machinery Vol. 15, No. 3, Fall, 2025

test_image_path_sample = random.sample(population=test_image_path_list,
 k=num_images_to_plot)
for image_path in test_image_path_sample:
 pred_and_plot_image(model=model,
 image_path=image_path,
 class_names=class_names,
 image_size=(224, 224))

Ahmadi, Detection and Classification of Some Diseases of Tomato Crops … 335

 قاله پژوهشیم

 319-335، ص 1404، پاییز 3، شماره 15جلد

 فرنگی با استفاده از یادگیری انتقالی های گوجهبندی تعدادی از بیماریتشخیص و دسته

 *1ایمان احمدی

 25/03/1403تاریخ دریافت:
 05/1403/ 08تاریخ پذیرش:

 چکیده

که نوع بیماری به سرررعت پذیر است ها تنها زمانی امکانکشهای پیشگیری مناسب مانند کاربرد علفهای گیاهی، انتخاب روشدر موضوع بیماری
منظور تشررخیص و برره EfficientNetدیررده و به دقت تشخیص داده شود. در این مطالعه یک مدل یادگیری انتقالی بررر مانررای مرردل از پرریش موزش

عنوان پایگاه تصاویر موزشی توسعه یافت. برمانای نتررای فرنگی بهتصویر از گیاه گوجه 2340فرنگی با استفاده از های گوجهبندی برخی از بیماریدسته
فریم در ثانیه(بود که برای مدل یررادگیری عمیقرری کرره روی رایانرره 5) fps 5بندی تصاویر در حدود این مطالعه در مرحله اعتاارسنجی مدل، نرخ دسته

های صحت و هزینه مربوط به مراحررآ مرروزش و زمررایش در عررددهای دوره علاوه چون منحنیشود، منطقی است. بهمعمولی اجرا می CPUمجهز به
خوبی موزش دیده است و بود(، مدل به %7های مربوط به این چهار حالت تقریااً افقی شده بودند)از نظر عددی، بدترین ضریب تغییرات داده 20بیش از

ریختگی مربوط به عملکرد مدل روی های واقع در قطر اصلی ماتریس در همعلاوه سلولافزایش عدد دوره به افزایش صحت مدل منجر نخواهد شد. به
های باقیمانده از سلول %3/3، و %7/7، %8/88طور دقیق های ماتریس پر شده بودند، بهتصاویر زمون با اعداد بزرگتری در مقایسه با محتوای سایر سلول

پررر شررده بودنررد. در نهایررت مقررادیر حساسرریت، 2و 1و 0ترتیب با اعررداد های مربوط به قطر اصلی ماتریس کنار گذاشته شده بودند(بهکه سلول)جایی
 بود. %85و %84، %86، %98، %85ترتیب برابر با و صحت مدل به F1اختصاصیت، دقت، نمره

 EfficientNetصحت مدل، ماتریس درهم ریختگی، مدل های کلیدی: واژه

 اصفهان، ایران کشاورزی، ب، غذا و فراسودمندها، واحد اصفهان)خوراسگان(، دانشگاه زاد اسلامی، گروه مهندسی تولید و ژنتیک گیاهی، دانشکده -1
 (Email: imanahmadi1358@iau.ac.irنویسنده مسئول: -)*

 https://doi.org/10.22067/jam.2024.88500.1258

iD

 های کشاورزینشریه ماشین

https://jame.um.ac.ir

mailto:imanahmadi1358@iau.ac.ir
https://doi.org/10.22067/jam.2024.88500.1258
https://orcid.org/0000-0003-3492-9443
https://jame.um.ac.ir/

