with the collaboration of Iranian Society of Mechanical Engineers (ISME)

Document Type : Research Article-en

Authors

1 Faculty of Chemical and Textile Engineering, National University of Engineering, Lima, Peru

2 Faculty of Fisheries and Food Engineering, National University of Callao, Peru

10.22067/jam.2025.89911.1283

Abstract

Seaweeds are well known for their technological, nutritional, and health values, and their preservation by drying is essential to stabilize and maintain the quality of the product during storage. The research presents the obtaining of mathematical models in polynomial functions using the response surface methodology. The influence of the independent drying variables was studied: load density (1.70-15 kg m-2), incandescent lamp wattage (0-500 W), temperature (30-70 °C) and air velocity (0.5-2.5 m s-1) on the response variables: global acceptance (--), total phenolic content (mg GAC/100 gdb) and drying time (min). The study also showed that the conditions of temperature and incandescent lamp wattage during drying significantly affected the total phenolic content. The optimum conditions were: load density 9.13 kg m-2, incandescent lamp wattage 374.5 W, temperature and drying air velocity of 63.3 °C and 1.88 m s-1, respectively. The results show that increasing the power of the incandescent lamps leads to a shorter drying time of approximately 40-45%. For these optimized conditions, mathematical models were applied to simulate the drying curve and kinetics of the material studied. Using the Quasi-Newton Simplex method, the models of Midilli et al. and Page in second place, achieved a better performance in the quality of fit of the curves to the experimental data. Under these conditions, the value of the effective diffusivity of water was of the order of 2.03×10-11 m2 s-1, a value very similar to those published for agro-industrial products. The information obtained can be of great help in the use of the obtained parameters and applied techniques for the development of equipment and process control in the drying of red seaweed.

Keywords

Main Subjects

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Aladag, M. O., Doğu, S., Uslu, N., Özcan, M. M., Gezgin, S. Y., & Dursun, N. (2020). Effect of Drying on Antioxidant Activity, Phenolic Compounds and Mineral Contents of Hawthorn and Wild Pear Fruits. Erwerbs-Obstbau, 62(4), 1439-0302. https://doi.org/10.1007/s10341-020-00526-6
  2. Amir, N., Mustajib, M. I., Gozan, M., & Chan, C. (2024). Development of a novel tray solar dryer for aquaculture product: Experimental study on drying kinetics and product quality in Eucheuma cottonii seaweed. Solar Energy, 273,1-16. https://doi.org/10.1016/j.solener.2024.112503
  3. Botelho, F., Corrêa, P., Goneli, A., Marcio, A., Martins, A., Magalhães, F., & Campos, S. (2011). Periods of constant and falling-rate for infrared drying of carrot slices. Storage and Processing of Agricultural Products, 15(8), 845-852. https://doi.org/10.1590/s1415-43662011000800012
  4. Burneo, N. F., Mora-Medina, M., & Figueroa, J. G. (2021). Optimization of Dehydration and Extraction of Phenolic Compounds from Mango Peel. Nova, 45(5), 621-629, https://doi.org/10.21577/0100-4042.20170842
  5. Castro, L. M., & Coelho-Pinheiro, M. N. (2015). A Simple Data Processing Approach for Drying Kinetics Experiments, Chemical Engineering Communications, 203(2), 258-269 https://doi.org/10.1080/00986445.2014.993468
  6. Celma, A. R., Rojas, R., & López-Rodríguez, F. (2008). Mathematical modelling of Thin-Layer infrared drying of wet olive husk. Chemical Engineering and Processing, 47(9-10), 1810-1818. https://doi.org/10.1016/j.cep.2007.10.003
  7. Chen, D., Li, K., & Zhu, X. (2012). Determination of effective moisture diffusivity and activation energy for drying of powdered peanut shell under isothermal conditions. BioResources 7(3), 3670-3678.
  8. Chenlo, , Arufe, S., Díaz, D., Torres, M. D., Sineiro, J., & Moreira, R. (2018). Air-drying and rehydration characteristics of the brown seaweeds, Ascophylum nodosum and Undaria pinnatifida. Journal of Applied Phycology, 30, 1259-1270. https://doi.org/10.1007/s10811-017-1300-6
  9. Crank, J. (1975). The Mathematics of Diffusion. 2nd ed. New York, USA. Oxford University Press Publishing House, P. 105.
  10. Del Rosario, E. Z., & Mateo, (2019). Hot water blanching pre-treatments: enhancing drying of seaweeds (Kappaphycus alvarezii S.). Open Science Journal, 4, 1-28. https://doi.org/10.23954/osj.v4i1.2076
  11. Dereje, B., & Abera, S. (2020) Effect of some pretreatments before drying on microbial load and sensory acceptability of dried mango slices during storage periods, Cogent Food & Agriculture, 6(1), 1807225. https://doi.org/10.1080/23311932.2020.1807225
  12. DESA. (February 03, 2025) Global Acceptance - Sensory Analysis; retrieved from: http://www.desa.edu.ar
  13. Díaz-godínez, G., Peña-solís, K., & Diaz-domínguez, G. (2024). Algae as nutritional and bioactive food ingredients. Mexican Journal of Chemical Engineering, 23(2), 1-19. https://doi.org/10.24275/rmiq/bio24209
  14. Dong, X., Hu, Y., Li, Y., & Zhou, Z. (2019). The maturity degree, phenolic compounds and antioxidant activity of Eureka lemon [Citrus limon (L.) Burm. f.]: A negative correlation between total phenolic content, antioxidant capacity and soluble solid content. Scientia Horticulturae, 243(3), 281-289. https://doi.org/10.1016/j.scienta.2018.08.036
  15. Galoburda, R., Kruma, Z. Y., & Ruse, K. (2012). Effect of Pretreatmen Method on the Content of Phenolic Compounds, Vitamin C and Antioxidant Activity of Dried Dill. International Journal of Nutrition and Food Engineering, 6(4), 50-59.
  16. Gonzales, R. V., Rodeiro, M. C., San Martin, F. C., & Vila, P. S. (2014). Introduction to sensory analysis. Hedonic study of bread in Ies Mugardos. Sgapeio, 1(1), 1-25.
  17. Haolu, L., Khurram, Y., Kunjie, Ch., Rui, F., Jiaxin, L., & Shakeel, A. S. (2018). Design and Thermal Analysis of an Air Source Heat Pump Dryer for Food Drying. Sustainability, 10, 1-17. https://doi.org/10.3390/su10093216
  18. Lewicki, P. P., & Korczak, K. (1996). Modeling convective drying of apple. Drying '96 - Proceedings of the 10th International Drying Symposium (IDS 961, Vol. B, (C. Strumillo and Z. Pakowski, eds.) pp. 965-972, Krakow, Poland.
  19. Lopez-Hortas, L., Florez-Fernandez, N., Mazon, J., Domínguez, H., & Dolores-Torres, M. (2023). Relevance of drying treatment on the extraction of high valuable compounds from invasive brown seaweed Rugulopteryx okamurae. Algal Research, 69, 1-11. https://doi.org/10.1016/j.algal.2022.102917
  20. Midilli, A., Kucuk, H., & Yapar, Z. (2002). A new model for single layer drying. Drying Technology, 20(7), 1503-1513. https://doi.org/10.1081/drt-120005864
  21. Nazemi, F., Keikhosro, K., & Denayer, J. F. (2023). Techno-economic aspects of different process approaches based on brown macroalgae feedstock: A step toward commercialization of seaweed-based biorefineries. Algal Research, 58, 1-14. https://doi.org/10.1016/j.algal.2021.102366
  22. Patil, M. D. R., Kore, M. S. S., Patil, M. V. N., Mane-Deshmukh, M. A. S., Mali, S. B. Y., & Durgade, D. P. (2019). Artificial Lightning in Solar Tunnel Dryer for Coriander. International Research Journal of Engineering and Technology, 6(7), 1051-1056.
  23. Purnomo, B. P. Y., & Fzahruddin, A. (2024). Design and Testing of Holagen Incandescent Lamp-Based Corn Drying Cabinet to Improve Efficiency and Cleanliness of the Processing Process. Indonesian Journal of Microbiology, 1(1). https://doi.org/10.47134/ijm.v1i1.2473
  24. Ramaswamy, H. S., & Nsonzi, F. (1998). Convective-air drying kinetics of osmotic pre-treated blueberries. Drying Technology, 26(3/5), 743-759.
  25. Rorato, T. B., Mezzomo, N., & Salvador, S. R. (2014). Application of banana peel extract with antioxidant potential in the formulation of biscuits. Latin American Food, 310, 60-66.
  26. Santhoshkumar, P., Yoha, K. S., & Moses, J. A. (2023). Drying of seaweed: Approaches, challenges and research needs. Trends in Food Science & Technology, 138, 153-163. https://doi.org/10.1016/j.tifs.2023.06.008
  27. Snoussi, A., Essaidi, I., Ben Haj Koubaier, H., Zrelli, H., Alsafari, I., Živoslav, T., Mihailovic, J., Khan, M., El Omri, A., Ćirković Veličković, T. Y., & Bouzouita, N. (2021). Drying methodology effect on the phenolic content, antioxidant activity of Myrtus communis leaves ethanol extracts and soybean oil oxidative stability. BMC Chemistry, 15(1). https://doi.org/10.1186/s13065-021-00753-2
  28. Sharma, G., Verma, R., & Pathare, P. (2005). Mathematical modeling of infrared radiation thin-layer drying of onion slices. Journal of Food Engineering, 71(3), 282-286. https://doi.org/10.1016/j.jfoodeng.2005.02.010
  29. Soysal, Y., Keskin, M., Arslan, A. Y., & Sekerli, Y. E. (2018). Infrared Drying Characteristics of Pepper at Different Maturity Stages. International Conference on Energy Research. Alanya, Turkey.
  30. Thakur, A. K., & Gupta, A. K. (2006). Water absorption characteristics of paddy, brown rice and husk during soaking, Journal of Food Engineering, 75(2), 252-257.
  31. Tingxue, Z., Qingying, D., Huabin, Z., & Hailong, Y. (2022). Drying Kinetics. Physicochemical properties, antioxidant activity and antidiabetic potential of Sargassum fusiforme processed under four drying techniques. LWT-Food Science and Technology, 163(1), 1-10. https://doi.org/10.1016/j.lwt.2022.113578
  32. Treybal, R. E. (1980). Mass transfer operations. 2nd. Ed. Mexico D. F. Mexico. Editorial McGraw-Hill; p. 480.
  33. Torrenegra-Alarcón, M., Granados-Conde, C., & León-Mendez, G. (2019). Antioxidant activity of ethanolic extract of capsicum frutescens L. Bistua. Journal of the Faculty of Basic Sciences, 17(2), 1-12. https://doi.org/10.24054/01204211.v2.n2.2019.3526
  34. Uribe, E., Vega-Gálvez, A., Di Scala, K., Oyanadel, R., Saavedra Torrico, J., & Miranda, M. (2011). Characteristics of Convective Drying of Cucumber Fruit (Solanum muricatum): Application of Weibull Distribution. Food Bioprocess Technology, 4(8), 1349-1356. https://doi.org/10.1007/s11947-009-0230-y
  35. UPAEP (February 02, 2025) Sensory analysis; recovered from: https://investigación.upcep.mx
  36. Vega, G. A., Lemus, M. R., Tello, I. C., Miranda, M., & Yagnam, F. (2009). Kinetic Study of convective drying of blueberry variety O’Neil (Vaccinium corymbosum ). Chilean Journal of Agricultural Research, 69(2), 171-178.
  37. Vigasini, S. C., Barrow, A., Xinyu, D., Osman, T., Hafiz, A. R., & Suleira A. (2023). Comparative study on the effect of different drying techniques on phenolic compounds in Australian beach-cast brown seaweeds. Algal Research, 72, 1-15. https://doi.org/10.1016/j.algal.2023.103140
  38. Vivanco-Pezantes, D., & Nieto-Freire, D. J. (2021). Use of response surface methodology for the optimization of ginger (Zingiber Officinale) sheet microwave drying and determination of equilibrium moisture conditions. Agroindustrial Science, 11(2), 211-219. https://doi.org/10.17268/agroind.sci.2021.02.11
  39. Wang, J., Yang, X. H., Mujumdar, A. S., Fang, X. M., Zhang, Q., & Zheng, Z. (2018). Effects of high-humidity hot air impingement blanching (HHAIB) pretreatment on the change of antioxidant capacity, the degradation kinetics of red pigment, ascorbic acid in dehydrated red pep-pers during storage. Food Chemistry, 259, 65-72. https://doi.org/10.1016/j.foodchem.2018.03.123
  40. Wells, M. L., Potin, P., Craigie, J. S., Raven, J. A., Merchant, S. S., & Helliwell, K. E. (2017). Algae as nutritional and functional food sources: revisiting our understanding. Journal of Applied Phycology, 29, 949-982. https://doi.org/10.1007/s10811-016-0974-5
  41. Xianglu, Z., Healy, L., Zhihang, Z., Maguire, J., Dae-Wur, S., & Tiwari, B. K. (2021). Novel postharvest processing strategies for value-added applications of marine algae. Science of Food and Agriculture, 1, 1-12. https://doi.org/10.1002/jsfa.11166
CAPTCHA Image