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Abstract 

Efficient control of agricultural machinery is crucial in sugar plants for maintaining product quality, 
managing operational costs, and improving productivity. The Ethiopian sugar industry is vital to the country's 
economy; however, issues with machinery management can lead to higher maintenance costs and poor 
operational efficiency. This study aims to evaluate the agricultural machinery management system at the Arjo 
Diddessa sugar factory and optimize operational costs. Between 2016 and 2022, data were collected through 
surveys, interviews, and observations. To improve machinery running costs, a linear programming model was 
studied using Linear Interactive and Discrete Optimizer )LINDO( software. The findings revealed that 49% of 
non-operational machinery required minor repair, whereas 14% required disposal. The anticipated work rate 
exceeded the actual rate by 35.33%. Among the tasks, uprooting exhibited the smallest variance at 5.73%, while 
inter-row cultivation displayed the greatest discrepancy at 67.21%. Initial repair expenses were minimal but 
increased as the equipment aged. The optimization model achieved a maximum reduction of 10.60% in 
operational costs during 2021-22, highlighting the importance of accurate machinery work rate estimation and 
performance analysis for enhancing efficiency. The study identified critical inefficiencies in machinery 
management and emphasized the need for robust maintenance systems and strategic replacement plans for aging 
equipment. Optimizing operational efficiency is essential for improving productivity and reducing costs in sugar 
production processes. 
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Introduction 

The Ethiopian sugar industry is a pillar of 
the country's agricultural and industrial 
sectors, playing a critical role in its 
socioeconomic growth. This industry not only 
provides a large number of jobs but also 
contributes significantly to national revenue 
and food security (Gebeyehu & Abbink, 
2022). Its wide-ranging impact is its relevance 
to Ethiopia's overall economic structure 
(Zikargie, Wisborg, & Cochrane, 2023). The 
Ethiopian sugar industry is pivotal to the 
nation's agricultural and industrial sectors, 
significantly contributing to socioeconomic 
development, job creation, and food security 
(Zikargie, Wisborg, & Cochrane, 2022). 
Despite its importance, the sugar industry 
faces challenges, particularly in agricultural 
machinery management (Gebreeyessus, 

Mekonnen, Chebude, & Alemayehu, 2021). 
Poor management of agricultural machinery 
can severely impact operational efficiency, 
resulting in higher maintenance and repair 
costs, increased fuel consumption, and a 
reduced lifespan for equipment. These 
problems collectively hinder productivity and 
profitability, underlining the need for effective 
machinery management strategies (Kolhe, 
Lemi, & Busse, 2024). 

The efficient management of agricultural 
machinery within this industry directly affects 
operational efficiency, productivity, and cost 
control. Studies underscore that suboptimal 
machinery management leads to elevated 
maintenance expenses, reduced equipment 
lifespan, and higher fuel consumption, thereby 
diminishing profitability (Ayele Zikargie & 
Cochrane, 2024).  
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Addressing these challenges requires 
innovative strategies tailored to the unique 
dynamics of Ethiopia's sugar industry.  

Research indicates that the integration of 
modern maintenance practices, such as 
predictive and preventive maintenance, can 
significantly mitigate operational 
inefficiencies (Nunes, Santos, & Rocha, 2023). 
For example, incorporating real-time 
monitoring and advanced diagnostic tools has 
been shown to reduce downtime and improve 
machinery utilization rates (Pejić Bach, 
Topalović, Krstić, & Ivec, 2023). Moreover, 
operator training programs focusing on 
machinery calibration and fuel-efficient 
practices play a critical role in maintaining 
equipment longevity and achieving operational 
excellence (Firoozi, Tshambane, Firoozi, & 
Sheikh, 2024). In the context of large-scale 
agricultural operations, optimization models 
like linear programming have proven effective 
in balancing cost reduction with machinery 
performance (Boninsenha, Mantovani, Costa, 
& da Silva Júnior, 2022). 

Establishing a comprehensive machinery 
management plan is critical to improving 
inefficient agricultural machinery management 
(Papageorgiou, 2015). This plan includes 
regular and preventive maintenance schedules 
to decrease downtime and repair costs, fuel-
efficient practices to minimize consumption, 
and systematic equipment performance 
tracking to identify underperforming 
machinery for timely replacement. Proper 
agricultural machinery management requires a 
holistic approach that includes regular 
maintenance, timely repairs, and strategic 
replacement of outdated equipment (Ambo, 
2024). This is crucial in mechanized 
agriculture, where the costs associated with 
purchasing and operating machinery are 
significant (Rahman et al., 2021; Zhang, Yang, 

Wang, & Twumasi, 2023).  
Efficient agricultural machinery 

management involves regular maintenance, 
accurate calibration, operator training, and 
proactive repairs, which significantly extend 
equipment lifespan and maintain top 
performance (Salawu et al., 2023). 
Maintenance procedures guarantee that 
potential issues are addressed before they lead 
to catastrophic breakdowns, reducing 
downtime and keeping equipment functioning 
smoothly (Abbasi, Martinez, & Ahmad, 2022). 
Hence, this study focuses on evaluating the 
current machinery management practices at 
the Arjo Diddessa sugar factory and proposes 
cost-reduction solutions to improve efficiency 
and productivity.  

 
Materials and Methods 

Study Area Description 

The study area is located in Southwestern 
Ethiopia, specifically within the Oromia 
Regional State, and encompasses the Eastern 
Wollega, Ilu Aba Bora, and Jimma Zones. It is 
540 kilometers from the capital along the 
Addis Ababa-Jimma-Nekemte Road. The site 
is 1,350 meters above mean sea level. It is 
located at 7°36'00" to 9° 36' 00" North and 
35°32'00" to 37° 34' 00" East. The study area 
has a mean annual rainfall of 1400 millimeters. 
The rainy season extends from May until 
October. The monthly mean maximum 
temperature ranges from 21.16°C to 33.75°C, 
while the monthly mean minimum temperature 
ranges from 7.01°C to 14.89°C. Rainfall is 
insufficient, with no rain for four to five 
months continuously, while in some months, 
there is constant rain, primarily during the 
summer season (Fig. 1) (Ashine, Tilahun 
Ashine, Yesuf, & Bokke, 2022). 
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Fig. 1. Study area description map 

 

Data Collection 

The required input data for the machinery 
programming was collected for six seasons, 
namely 2016-2017 to 2021-2022, from both 
primary and secondary sources through semi-
structured questionnaires, interviews, and 
observation surveys. Primary data were 
collected using formal and personal contacts 
from Arjo Diddessa sugar factory. These data 
include typical field working speeds (km h-1), 
recommended field operations efficiency (%), 
machine width, and local purchase prices. The 
information also encompasses the types and 
sizes of available machinery and tractors, the 
type of field operations, machinery capacity 
(output), daily working hours, cost of field 
operations per hectare, fuel consumption, and 
the service life of tractors and machines. 
Secondary data were collected from various 
relevant documents, such as published and 
unpublished documents, bulletins, operation 
manuals and specifications sheets of 

machinery and tractors, agricultural operations 
scheduling programs, internal periodical 
reports, and the most relevant national and 
international published data. Additionally, 
both quantitative and qualitative data were 
collected for this study. Quantitative data, 
which can be quantified and represents any 
quantity, number, or percentage, were 
collected. Qualitative data, expressing any 
quality such as goodness, fairness, badness, 
and sufficiency, were also gathered. 

 
Data Analysis Methods 

Microsoft Excel was utilized to analyze the 
relationships between various variables and 
parameters, including machinery work rates, 
cost components, and optimization scenarios. 
Linear programming techniques were applied 
to optimize the operational costs of farm 
machinery using LINDO (Linear Interactive 
and Discrete Optimizer) software. The 
optimization model was constructed based on 
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the gathered data and associated cost 
parameters. Analysis of Variance (ANOVA) 
was employed to demonstrate simple 
relationships and compare different variables. 
The collected data were interpreted and 
presented through tables, pie charts, bar 
graphs, and regression graphs. To address the 
research problem and findings, the data 
interpretation utilized descriptive methods, 
such as calculating percentages and average 
values, alongside statistical methods for deeper 
analysis. This structured approach not only 
facilitated a comprehensive understanding of 
the data but also highlighted key insights into 
machinery performance and cost management 
strategies within the agricultural context of the 
study. The combination of visual aids and 
statistical analysis provided a robust 
framework for evaluating operational 
efficiency and identifying areas for 
improvement in machinery management 
practices. 

 
Sampling Techniques 

The study considered all available farm 
machinery, including tractors and implements, 
at the Arjo Diddessa sugar factory. Different 
sampling techniques were used to calculate 
sample size based on study objectives and 
design. According to Etikan and Babatop 
(2019), a popular formula for computing 
sample size in survey research from a finite 
population is the formula shown as follow: 

𝑋 =
(𝑍2.𝑃.(1−𝑃))

𝐸2                                               (1) 

where, X is the sample size, P is the 
proportion of the sample (typically 50% or 
0.5), Z is the Z-score for the desired 
confidence level (1.96 for a 95% confidence 
interval), and E is the margin of error (0.05).  

For a finite population, the adjusted sample 
size is determined as: 

𝑛 =
(𝑁.𝑋)

(𝑋+𝑁−1)
                                                   (2) 

where, n is the adjusted sample size, N is 
the total population size, and X is the initial 
sample size. 

For a population of 47, this calculation 
results in an initial sample size (X) of 384 and 

an adjusted sample size (n) of 42. Respondents 
from the land preparation, cultivation, and 
maintenance departments of Arjo Diddessa 
sugar factory were randomly selected to 
complete structured questionnaires on 
machinery management. Out of 42 
participants, 26 (62%) completed the 
questionnaire, with 10 from land preparation 
and cultivation and 16 from maintenance. 

Actual effective field capacity (AEFC), 
defined as the actual rate of area covered 
during the actual harvesting time, is a function 
of the machine's rated width and was 
calculated using the following formula 
(Yaseen et al., 2024): 

AEFC =
𝑦𝑒𝑎𝑟 𝑐𝑢𝑙𝑡𝑖𝑣𝑎𝑡𝑒𝑑(ha)

𝑎𝑛𝑛𝑢𝑎𝑙 ℎ𝑜𝑢𝑟𝑠(hr)
                            (3) 

Theoretical field capacity, expressed in 
hectares per hour, is the rate of field coverage 
achieved if the weeder operates without 
interruptions, based on its theoretical width 
and speed, and is determined as follows 
(Fahmida et al., 2024): 

TFC =
𝑊(m)×𝑆(km hr−1)

10
                                 (4) 

According to Zhang et al. (2024), the 
effective field capacity (EFC) of the machine, 
expressed in hectares per hour, was calculated 
using Equation 5 by recording the time 
required to cover a unit area, including the 
time spent lifting and lowering the equipment 
as well as turning the machinery. 

CEFC =
𝑊(m)×𝑆(km hr−1)×𝐹𝐸(%)

10
                     (5) 

 
Optimization Model for Operational Cost 

Similarly, the model was used in agriculture 
to maximize crop patterns and resource 
allocations (water, land, fertilizers, etc.) 
(Kalwar, Khan, Shahzad, Wadho, & Marri, 
2022). According to Jupiara et al. (2024), 
linear programming is a field that applies 
scientific methods to solve control and 
optimization problems, such as agricultural 
system management, by providing more 
effective solutions aimed at maximizing 
profits and minimizing costs while taking into 
account the context's specific constraints. In 
addition, Bhamare (2023) emphasizes the 
application of mathematical programming 
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techniques, namely linear programming, 
problems, applications, and models connected 
to the agro-industrial sector. 

Linear programming (LP) is a mathematical 
strategy used in agriculture to optimize 
resource allocation, productivity, and 
profitability, particularly while operating 
agricultural machines (Oladejo, Abolarinwa, & 
Salawu, 2020). This strategy is crucial for 
resource management and cost reduction. The 
six years (2016/17-2012/22) fiscal working 
decision variable and operational cost 
expenses were modeled as an optimization 
problem (linear programing model). Thus, the 
objective function of the optimization problem 
is expressed in Eq. 6: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑜𝑠𝑡𝑠, 𝑍 =   𝑎1𝑇𝑅𝑀𝑇  +
 𝑎2𝑇𝑂𝑝𝑇  +  𝑎3𝑇𝐹𝑢𝑇  +  𝑎4𝑇𝐿𝑢𝑇  +
 𝑎5𝑇𝑆𝑝𝑇                (6) 

Subject to the linear constraints (s.t) 
a11RM1 + a12Op1 + a13Fu1 + a14Lu1 + a15Sp1 

≥ X1 

a21RM2 + a22Op2 + a23Fu2 + a24Lu2 + a25Sp2 
≥ X2 

a31RM3 + a32Op3 + a33Fu3 + a34Lu3 + a35Sp3 
≥ X3 

a41RM4 + a42Op4 + a43Fu4 + a44Lu4 + a45Sp4 
≥ X4 

a51RM5 + a52Op5 + a53Fu5 + a54Lu5 + a55Sp5 
≥ X5 

a61RM6 + a62Op6 + a63Fu6 + a64Lu6 + a65Sp6 

≥ X6 

where, a1T = Total repair and maintenance 
cost per six years 

            a2T = Total operator costs per six 
years 

            a3T = Total fuel costs per six years 
            a4T = Total lubricant costs per six 

years 

             a5T = Total spare part costs per six 
years, the detail notation is shown in the 
appendix.  

RM1, RM2, …, RMT; Op1, Op2, …, OpT; 
Fu1, Fu2, …, FuT; Lu1, Lu2, …, LuT; Spp1, 
Spp2, …, SppT = Vector variable to determine 
the objective function value. 

Eq. 7 can also be expressed in standard 
canonical form as: 

Optimize (Min) Z = ∑ 𝐹𝐶𝑗𝑋𝑗6
𝑗=1  + ∑ 𝑆𝑖6

𝑖=1   (7) 

Subject to the linear constraints 
∑ 𝑎𝑖𝑗 𝑥𝑗𝑛

𝑗=1  = bi, i = 1, 2, …, m, and Xj, Si ≥ 

0 (for all i and j) 
whereas;  
S1, S2, …, S6 = Slack or surplus variables 
X1, X2, …, X6 = Total operational costs of 

each year (from 2016/17-2021/22) 
Z = Measure of performance which can be 

either profit or costs. 
The research employed linear programming 

software (LINDO) to optimize the operational 
costs of agricultural machinery at the Arjo 
Diddessa sugar factory. 

 
Results and Discussion 

Agricultural Machinery Status in Arjo Diddessa 

Sugar Factory 

While previous analyses have optimized the 
status of agricultural machinery, the 
introduction of new machines and technical 
advancements has significantly increased their 
usage. As a result, a current optimization was 
needed (Diez de Bonilla-Jiménez, Chávez-
Mejía, Navarro-González, Ruiz-Velázquez, & 
Molina-Valencia, 2024; Sun, Zhang, Chen, & 
Qiao, 2023). The results of the study about the 
status of agricultural machinery at the Arjo 
Diddessa sugar factory shed light on the 
facility's operating efficiency and problems. 
The Factory has a total of 174 agricultural 
machinery, including tractors and tools. Only 
37% of the machinery is functional, while 49% 
requires maintenance, and 14% needs disposal 
(Fig. 2). The fact that over half of the 
machinery is not working implies a significant 
maintenance backlog, which might be caused 
by a variety of factors, such as insufficient 
maintenance workers, a lack of spare parts, or 
inappropriate maintenance schedules. Regular 
maintenance is critical since neglected 
machinery is more likely to fail, resulting in 
greater downtime and lower output. 
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Fig. 2. Non-functional machinery at the Arjo Diddessa sugar factory 

 

Moreover, the high rate of non-functional 
machinery likely contributes to operational 
inefficiencies and increased costs. Delays in 
critical farming operations such as planting 
and harvesting can adversely affect sugarcane 
yield and quality. Furthermore, operating 
poorly maintained machinery can lead to 
higher fuel consumption, exacerbating 
operational costs. This backlog could be due to 
several factors, such as insufficient 
maintenance staff, lack of spare parts, or 
inadequate maintenance planning. Addressing 
this issue is crucial, as machinery that is not 
regularly maintained is more prone to 
breakdowns and reduced performance. 
Implementing a comprehensive maintenance 
management system that includes preventive 
maintenance schedules and timely repairs is 
essential to address these challenges. 
Additionally, investing in training for 
maintenance staff and ensuring the availability 
of necessary spare parts will enhance the 
factory's operational capabilities. This strategy 
ensures that the factory operates with reliable 
and efficient machinery, minimizing downtime 
and unexpected failures (Salawu et al., 2023). 

The high percentage of non-functional and 
poorly maintained machinery likely 
contributes to operational inefficiencies, 
increased costs, and lower productivity. For 
instance, non-functional machinery can cause 
delays in critical farming operations, such as 
planting and harvesting, which can affect the 
overall yield and quality of the sugarcane. 
Additionally, operating machinery that is in 
poor condition can lead to higher fuel 

consumption and more frequent breakdowns, 
further escalating operational costs (Shaheb, 
Venkatesh, & Shearer, 2021). 

 
Comparing the Calculated and Actual Rates of 

Work for Different Implements 

The study compared the calculated and 
actual rates of work for different agricultural 
implements used at the factory. The results 
showed that the calculated rate of work was 
35.33% higher than the actual rate. The 
implement with the least variation between 
calculated and actual rate was uprooting 
(5.73%), while inter-row cultivation had the 
most variation (67.21%). The estimated and 
actual rates of work for the various field 
forward speeds and operations performed at 
the factory were assessed, as shown in Table 1. 
The data presented in the table outlines the 
operational parameters for various agricultural 
implements used at the Arjo Diddessa sugar 
factory, including their width, hours of 
operation, speed, and effective field capacities. 

The table includes several operations: bush 
cleaning, ripping, uprooting, deep plowing, 
harrowing, furrowing, and inter-row 
cultivation. Each operation is associated with 
specific machinery, indicating the implement 
type used for that task. The width of the 
implements varies from 2.1 m for bush 
cleaning and ripping to 6 m for harrowing. 
Wider implements typically allow for greater 
coverage per pass, which can enhance 
efficiency. The number of hours each 
implement operates varies significantly. For 
instance, bush cleaning operates for 1,393.16 

49%37%

14 %

Minor repair Major repair Needs disposal
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hours, while ripping only operates for 141.44 
hours. This disparity suggests that certain 
operations are prioritized over others based on 
seasonal requirements or operational 
strategies. The speed of operation ranges from 

3 km h-1 for ripping to 8 km h-1 for furrowing. 
Higher speeds can lead to increased 
productivity; however, they must be balanced 
with the quality of work performed. 

 
Table 1- Calculated and actual rate of work for different implements 

Operations Implement  Width (m) Hours 
Speed 

(km h-1) 

A.E.F.C  

(ha h-1)  

T.F.C 

(ha h-1)   
FE% 

C.E.F.C  

(ha h-1)  
Variation (%) 

Bush cleaning  Shanks 2.1 1,393.16 4 0.57 0.84 85 0.71 19.72 

Ripping Shanks 2.1 141.44 3 0.45 0.63 85 0.54 16.67 

Uprooting Disc plow 4 262.4 6 1.6 2.4 80 1.92 16.67 

Deep plowing  Disc plow 4.5 1,019.60 5 1.8 2.3 85 1.91 5.73 

Harrowing Disc harrow  6 202.78 7 2.3 4.2 80 3.36 36.11 

Furrowing Furrower  4.35 862.92 8 1.43 1.16 85 2.96 51.67 

Inter-row cultivation Disc ridger 4.35 888.54 7 0.8 1.02 80 2.44 67.21 

 
Fig. 3 compares the calculated and actual 

work rates for various agricultural implements 
at the and performance of the machinery used 
in operations. Fig. 3 illustrates that the 
calculated effective field capacity (CEFC) (ha 
h-1) is consistently higher than the actual 
effective field capacity (AEFC) (ha h-1) for all 
implements assessed. This discrepancy 

indicates that while theoretical calculations 
suggest optimal performance, practical 
conditions significantly impact operational 
efficiency. The calculated work rate was 
35.33% higher than the actual rate, 
highlighting a substantial gap between 
expected and realized productivity. 

 

 
Fig. 3. Calculated and actual rate of work for different implements 

 
In the case of implement performance, 

harrowing exhibited the highest calculated 
field efficiency at 3.36 ha h-1, with an actual 
field efficiency of 2.3 ha h-1, indicating 
effective performance under ideal conditions. 
Furrowing followed with a calculated rate of 
2.96 ha h-1 and an actual rate of 1.43 ha h-1, 

demonstrating good efficiency as well. The 
inter-row cultivation recorded an actual work 
rate of 0.8 ha h-1, significantly lower than its 
calculated rate of 2.44 ha h-1, while uprooting 
achieved an actual rate of 1.6 ha h-1 compared 
to a calculated rate of 1.92 ha h-1, highlighting 
notable discrepancies likely due to operational 
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inefficiencies, varying field conditions, and the 
unique characteristics of each implement. 
Conversely, ripping had the lowest rates, with 
a calculated rate of 0.54 ha h-1 and an actual 
rate of 0.45 ha h-1, suggesting that this 
operation may be particularly challenging or 
inefficient. 

Fig. 3 highlights notable variations in 
performance across different operations. 
Uprooting exhibited the least variation 
between calculated and actual rates, with only 
a 5.73% difference, suggesting this operation 
is performed consistently. In contrast, inter-
row cultivation displayed the highest variation 
at 67.21%, indicating potential inefficiencies 
or inconsistencies in this process, possibly due 
to factors such as soil conditions or operator 
experience. The observed differences between 
calculated and actual rates emphasize the 
importance of understanding operational 
limitations and external factors affecting 
machinery performance. Factors such as soil 
type, moisture content, and operator skill can 
significantly influence how effectively 
machinery can operate in the field. 

 
Agricultural Machinery Cost Management 

Effective management of machinery costs 
helps optimize profitability, improve 
efficiency, and make informed decisions 
regarding machinery investments. It requires a 
comprehensive approach that considers 
various factors such as equipment selection, 
maintenance, operator training, technology 
adoption, and financial planning. By applying 

these strategies and consistently assessing the 
management practices of factory machinery, 
we can effectively reduce costs and enhance 
overall operational efficiency at the Arjo 
Diddessa sugar factory. The study analyzed 
various cost components of agricultural 
machinery, including depreciation, repair and 
maintenance costs and fuel, oil costs, operator 
costs, and spare part costs. 

 
Depreciation 

Fig. 4 illustrates the calculated depreciation 
costs (Birr) of tractors at the Arjo Diddessa 
sugar factory, utilizing the declining balance 
method. The figure reveals a clear trend in 
how the value of each tractor decreases over 
time, represented by a polynomial regression 
curve for each model: YTO 180, New H.TM 
7020, and YTO 130. The YTO 180 tractor 
shows the highest depreciation costs, 
indicating that older machinery tends to lose 
value more rapidly compared to newer models. 
The New H.TM 7020 and YTO 130 tractors 
exhibit lower depreciation rates, reflecting 
their relatively recent acquisition and better 
maintenance practices. The second-order 
polynomial functions used to analyze the 
relationship between depreciation cost and 
service life demonstrate a strong correlation, 
as indicated by high R2 values (0.9993 for both 
New H.TM 7020 and YTO 130). This suggests 
that the declining balance method effectively 
captures the depreciation behavior of these 
tractors. 
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Fig. 4. Calculated Declining Balance Method (DBM) depreciation cost (Birr) of tractors 

 

The gradual curve in the figure signifies 
that as the service life increases, the 
depreciation cost accumulates consistently, 
albeit at a decreasing rate. The findings also 
highlight the necessity for regular maintenance 
to prolong equipment lifespan and mitigate 
steep depreciation rates. 

 
Repair and Maintenance Costs 

Repair and maintenance costs play a major 
role in total operating costs. Newly acquired 
agricultural machinery begins to deteriorate 
from the use of machines. Especially in the 
study area, the environment was extremely 
harsh. Since tillage activities begin in the dry 
season, there is a lot of dust that wears out the 
engine and its connected parts. Machine 
systems and implement mechanisms had 
frequently failed in the farm area. Daily 
maintenance and a little lubrication were 
necessary. Failures of machine mechanisms 

during the peak season of the year raise the 
cost of downtime. Effective repair and 
maintenance activities are essential to reducing 
the cost of downtime during the peak times of 
the year. The repair and maintenance costs 
were a significant portion of the total 
operational costs, ranging from 25-30% across 
the study period. 

 
Fuel and Oil Costs 

Fig. 5 illustrates the annual farm machinery 
operation costs from 2016/17 to 2021/22 at the 
Arjo Diddessa sugar factory, highlighting 
significant fluctuations in various cost 
components over the years. Repair and 
maintenance costs peaked in 2020/21, 
suggesting an increase in maintenance needs 
or unexpected repairs during that period, 
before experiencing a slight decrease in 
2021/22.  
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Fig. 5. Summary of annual (2016/17-2012/22) farm machinery operation costs 

 

Operator costs show a decreasing trend 
from 2016/17 to 2019/20, followed by an 
increase in 2020/21, and then a decline again 
in 2021/22. These fluctuations could reflect 
changes in workforce size, improvements in 
labor efficiency, or adjustments in wage rates 
throughout the analyzed period. Fuel costs 
exhibited a consistent upward trend, increasing 
from 2019/20 to 2020/21 and continuing to 
rise in 2021/22, which may indicate rising fuel 
prices or increased consumption due to higher 
operational demands. Repair and Maintenance 
Costs (RMC) peaked in the fiscal year 
2020/21, indicating an increase in either the 
frequency of failures or more intensive use of 
machinery, resulting in increased maintenance 
requirements. A slight decrease in 2021/22 
may indicate improved maintenance 
procedures or less equipment usage. The data 
show a downward trend in lubricant and oil 
prices (LOC) from 2016/17 to 2019/20, 
followed by an increase in 2020/21, most 
likely due to increased usage, then another 
reduction in 2021/22. Spare part costs varied 
significantly over the years, with the lowest 
recorded cost in 2021/22 and the highest in 
2016/17; this variation may be attributed to 
changing maintenance needs or the frequency 
of repairs. 

Overall, total operational costs displayed 
fluctuations as well, peaking in 2021/22 and 
reaching their lowest point in 2019/20. This 

variation is influenced by the combined effects 
of repair and maintenance costs, operator 
costs, fuel expenses, lubricant costs, and spare 
part expenditures. Notably, fuel and oil costs 
accounted for approximately 30-35% of total 
operational expenses during the study period, 
underscoring their significant impact on 
overall machinery operation costs.  In general, 
Fig. 5 provides critical insights into how 
different cost components contribute to the 
financial performance of farm machinery 
operations at the Arjo Diddessa sugar factory 
over time. As shown in Table 2, the 
optimization model significantly impacted 
reducing total operational costs, achieving a 
reduction of up to 10.60% during the 2021-22 
period. The sensitivity analysis shows that the 
total operation costs for the constraint in the 
2020/21 year have an allowable increase of 
2.80E+06 and an allowable decrease of 
9.19E+06. After optimization, the total 
operating costs decrease, leading to an 
improvement of 3.93%. The overall operation 
expenses for the constraint in the 2021/22 year 
have an allowable increase of 3.66E+06 and an 
allowable decrease of 2.72E+07. After 
optimization, the total operation cost value 
decreases significantly, resulting in a 
considerable improvement of 10.60%. The 
optimization model reduced the total 
operational costs by up to 10.60% in 2021-22 
compared to the pre-optimization costs. The 
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statistical analysis of the data using paired t-
tests indicated that optimizing farm machinery 
significantly reduced the operational costs of 
the Arjo Diddessa sugar factory (p < 0.05) 
(Table 3). Tests of the model verification and 
analysis on a statistical basis in the case of 

Arjo Diddessa sugar factory reveal the 
opportunity to improve the control expenses, 
operational costs of farm machinery, and 
machinery distribution efficiency in the sugar 
factory. 

 
Table 2- Total operational costs 2016/17-2012/22 before and after optimization 

Year 

Right 

hand side 

(RHS) 

Allowable 

increase 

Allowable 

decrease 

Before 

optimization 

After   

optimization 
Difference 

Improvement 

(%) 

2016/17 3.02E+08 2.05E+05 1.80E+06 3.02E+08 3.00E+08 2.00E+06 0.66 

2017/18 2.44E+08 5.16E+06 2.64E+05 2.50E+08 2.44E+08 5.41E+06 2.17 

2018/19 2.16E+08 5.18E+06 6.13E+06 2.22E+08 2.10E+08 1.17E+07 5.28 

2019/20 1.39E+08 3.03E+04 1.15E+06 1.39E+08 1.37E+08 1.18E+06 0.85 

2020/21 3.02E+08 2.80E+06 9.19E+06 3.05E+08 2.93E+08 1.20E+07 3.93 

2021/22 3.07E+08 3.66E+06 2.72E+07 3.10E+08 2.77E+08 3.29E+07 10.60 

 
The sensitivity analysis indicates that the 

total operational costs for the constraints in the 
2020/21 fiscal year have an allowable increase 
of 2.80 million Birr and an allowable decrease 
of 9.19 million Birr. Following optimization, 
the total operating costs decreased, resulting in 
an improvement of 3.93%. For the 2021/22 
fiscal year, the overall operational costs for the 
constraints show an allowable increase of 3.66 
million Birr and an allowable decrease of 27.2 
million Birr. After optimization, there was a 
significant reduction in total operational costs, 
leading to a substantial improvement of 
10.60%. The optimization model effectively 

reduced total operational costs, including both 
fixed and variable expenses, by as much as 
8.92% in 2018-19 compared to pre-
optimization figures. Statistical analysis using 
paired t-tests confirmed that optimizing farm 
machinery significantly minimized operational 
costs at the Arjo Diddessa sugar factory (p < 
0.05) (Table 3). Furthermore, model 
verification and statistical analysis reveal 
opportunities to enhance control over 
expenses, improve operational costs associated 
with farm machinery, and increase machinery 
distribution efficiency within the sugar factory. 

 
Table 3- T-test analysis for all total operational costs before and after optimization 

 

Paired Difference  

 

 

                                                          95% Confidence Interval  

                                                      of the difference                

Source Mean           Std. D            Std. EM   Lower Upper  t Df Sig.(p-value) 

Paired before- after 2.55E+08 6.70E+07 2.72E+07 -1.45E+06 2.32E+07 2.2673 5 0.0727 

 
The sensitivity analysis provides critical 

insights into how operational costs can 
fluctuate based on varying constraints, 
highlighting the importance of understanding 
both allowable increases and decreases in cost 
components. For example, the substantial 
allowable decrease of 9.19 million Birr in 
2020/21 suggests that there was considerable 
room for reducing costs without compromising 
operational effectiveness, indicating potential 
inefficiencies that could be targeted for 

improvement. The results from the 
optimization model demonstrate a clear trend 
toward cost reduction across multiple years, 
with a notable improvement of 10.60% in 
2021/22.  

 

Conclusion 

The study at Arjo Diddessa sugar factory 
identified significant inefficiencies in 
machinery management, with only 37% of 
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equipment operational and 49% requiring 
maintenance, leading to delays, higher costs, 
and reduced productivity. A 35.33% 
discrepancy in work rates highlighted the 
impact of external factors like operator 
expertise and field conditions. Optimization 
measures achieved cost savings of up to 
10.60% in 2021/22, emphasizing the 
importance of maintenance systems, staff 
training, and strategic machinery replacement. 
Cost analysis revealed repair, maintenance, 
fuel, and oil as major expense drivers, 
underscoring the need for effective cost 
management strategies. Future research should 
focus on exploring innovative strategies to 
optimize energy consumption in agricultural 
machinery operations. This could include 
integrating renewable energy sources, such as 
solar-powered systems, and developing 
energy-efficient machinery designs. 
Additionally, studies on advanced data 
analytics for predictive maintenance and real-
time monitoring could significantly enhance 
operational efficiency while reducing 
environmental impact. Such research would 
contribute to more sustainable and cost-
effective management practices in the sugar 

production industry. 
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آرجو   قنددر کارخانه  یکشاورز آلاتنیماش تیریمد ستمیس یهانهیهز یسازنه یو به یابیارز

 دسا ید

 1. اسلمنی. ایا، 2سای. هوری. کیت، *1. بوس یاس. ک

 07/07/1403  تاریخ دریافت:
 11/1403/ 13 تاریخ پذیرش:

 دهیچک 

مهمم   اریبس یورو بهبود بهره  یاتیعمل  یهانهیهز  تیریمحصول، مد  تیفیحفظ ک  یبرا  قند  یهادر کارخانه  یکشاورز  های  نیماش  بر  کارآمد  نظارت
 یرنگهممدا یهانممهیمنجر به هز تواندیم ها نیماش تیریحال، مشکلات مربوط به مد نیاست؛ با ا یاتیکشور ح نیاقتصاد ا یبرا  یوپیات  قنداست. صنعت  
 یسممازنهیو به دسممایآرجممو د قنممددر کارخانممه  یکشمماورزهای  نیماش تیریمد  ست یس  یابیارز  ،مطالعه  نید. هدف انشو  پایین  یاتیعمل  یوربالاتر و بهره

 یهانممهیهزبهبود  یشدند. برا یآورجمععینی و مشاهدات  همصاحب ،ینظرسنج قیها از طر، داده۲0۲۲تا  ۲01۶ یهاسال  نیاست. ب  یاتیعمل  یهانهیهز
%  49 ،رفعالیغ های نیماشکه از بین  دهندمینشان  هاافتهیمورد مطالعه قرار گرفت.  LINDO افزاربا استفاده از نرم یمدل خط کی ،ها نیماش یجار
فراتممر  یاز نممرخ واقعمم %  33/35 شممدهینیبشی. نرخ کار پطور کامل از چرخه حذف شوند% غیرقابل تعمیر هستند و باید به  14و    دارند  جزئی  ریبه تعم  ازین

نممرخ  اختلاف را با نیشتریب%  ۲1/۶7با  یفیکه کشت رد ی، در حالاختلاف را با نرخ کار واقعی داشت  نیکمتر%    73/5با    یکنشهیر  ف،یوظا  نیب  ازرفت.  
 سممال زراعممیدر  یسممازنهی. مدل بهندافتی شیافزا های تعمیر نیز، هزینهزاتیسن تجه شیاما با افزا ،ددنبو کمینه ریتعم هیاول  یهانهینشان داد. هزواقعی  

 یعملکممرد را بممرا لیمم و تحل آلاتنیماشواقعی نرخ کار  قیدق نیتخم  تیکه اهم  شد  یاتیعمل  یهانهیهز  یرصدد  ۶0/10کاهش    منجر به  ۲0۲1-۲0۲۲
و  ریمم تعم  یهاسممت یبممه س  ازیمم و بممر نشممدند    ییشناسمما  آلاتنیماش  تیریدر مد  یاساس  یهایناکارآمد  ،مطالعه  نیا  در  .کندیبرجسته م  یوربهره  شیافزا

در  هانممهیو کاهش هز یوربهبود بهره یبرا یاتیعمل یوربهره یسازنهی. بهشودمی دیکافرسوده ت  زاتیتجه  ینیگزیاج  کیاستراتژ  هو برنام  یقو  ینگهدار
 .است یضرور قند دیتول دنیفرآ
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