with the collaboration of Iranian Society of Mechanical Engineers (ISME)

Document Type : Research Article-en

Authors

Department of Plant Production and Genetics, Faculty of Agriculture, University of Zanjan, Iran

10.22067/jam.2025.91522.1329

Abstract

This study evaluates the energy consumption and economic performance of three different weed control methods employed in olive orchards in Tarom County, Zanjan Province, Iran, with an emphasis on sustainable agriculture. The objective is to assess the energy efficiency and cost-effectiveness of different weed management systems. The analysis includes chemical weed control (System I), mechanical control (System II), and integrated weed management (System III). Data were collected through interviews with 50 olive farmers, supplemented by official agricultural records. Results show that total energy consumption was highest in System III (93,069.16 MJ ha-1), and lowest in System I (64,297.16 MJ ha-1). System I also demonstrated superior energy efficiency (0.74), output energy (47,648.40 MJ ha-1), and energy productivity (0.06 kg MJ-1), making it the most viable option for optimizing energy consumption. Economically, System I generated the highest net profit (4,662.28 $ ha-1) and benefit-cost ratio (2.66), outperforming Systems II (3,073.31 $ ha-1; BCR: 2.16) and III (2,953.57 $ ha-1; BCR: 1.97). The study concludes that System I, with its efficient use of renewable energy, is the most viable option in terms of both energy and economic performance, providing a balance between low energy input and high yield, thus maximizing profits and minimizing production costs. These findings emphasize the importance of selecting appropriate weed control methods to optimize energy use and reduce overall production costs in olive cultivation.

Keywords

Main Subjects

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Abdul Rahman, N., Larbi, A., Opoku, A., Tetteh, F. M., & Hoeschle-Zeledon, I. (2019). Corralling, planting density, and N fertilizer rate effect on soil properties, weed diversity, and maize yield. Agroecology and Sustainable Food Systems, 43(3), 243-260. https://doi.org/10.1080/21683565.2018.1516264
  2. Angnes, G., de Almeida, B. O., Milan, M., & Romanelli, T. L. (2021). Energy and economic performances of stump and roots removal of eucalyptus for bioenergy. Biomass and Bioenergy, 153, 106229. https://doi.org/10.1016/j.biombioe.2021.106229
  3. Artukoğlu, M. M., Olgun, F. A., & Adanacıoğlu, H. (2012). An economic analysis of organic and conventional olive production: Case of Turkey. Ege Üniversitesi Ziraat Fakültesi Dergisi, 49(3), 243-247. https://doi.org/10.20289/zfdergi.69695
  4. Azimi, M., Zeinanloo, A. A., & Mostafavi, K. (2016). Evaluation of Compatibility and Morpho–Physiological Characteristics of Some Olive Cultivars (Oleaeuropaea) at Tarom Climate. Journal of Horticultural Science, 30(1), 19-34. https://doi.org/10.22067/jhorts4.v30i1.26236
  5. Azizi, K., & Heidari, S. (2013). A comparative study on energy balance and economical indices in irrigated and dry land barley production systems. International Journal of Environmental Science and Technology, 10, 1019-1028. https://doi.org/10.1007/s13762-012-0157-0
  6. Babushkina, E. A., Belokopytova, L. V., Grachev, A. M., Meko, D. M., & Vaganov, E. A. (2017). Variation of the hydrological regime of Bele-Shira closed basin in Southern Siberia and its reflection in the radial growth of Larix sibirica. Regional Environmental Change, 17(6), 1725-1737. https://doi.org/10.1007/s10113-017-1137-1
  7. Banaeian, N., Zangeneh, M., & Clark, S. (2020). Trends and future directions in crop energy analyses: a focus on Iran. Sustainability, 12(23), 10002. https://doi.org/10.3390/su122310002
  8. Basavalingaiah, K., Ramesha, Y., Paramesh, V., Rajanna, G., Jat, S. L., Dhar Misra, S., ..., & Raveesha, S. (2020). Energy budgeting, data envelopment analysis and greenhouse gas emission from rice production system: A case study from puddled transplanted rice and direct-seeded rice system of Karnataka, India. Sustainability, 12(16), 6439. https://doi.org/10.3390/su12166439
  9. Beckie, H. J. (2006). Herbicide-resistant weeds: management tactics and practices. Weed Technology, 20(3), 793-814. https://doi.org/10.1614/WT-05-084R1.1
  10. Beckie, H. J., Ashworth, M. B., & Flower, K. C. (2019). Herbicide resistance management: Recent developments and trends. Plants, 8(6), 161. https://doi.org/10.3390/plants8060161
  11. Canakci, M., Topakci, M., Akinci, I., & Ozmerzi, A. (2005). Energy use pattern of some field crops and vegetable production: Case study for Antalya Region, Turkey. Energy conversion and Management, 46(4), 655-666. https://doi.org/10.1016/j.enconman.2004.04.008
  12. CBI. (2024). Central Bank of Iran. www.cbi.ir
  13. Cellura, M., Longo, S., & Mistretta, M. (2011). The energy and environmental impacts of Italian households consumptions: an input–output approach. Renewable and Sustainable Energy Reviews, 15(8), 3897-3908. https://doi.org/10.1016/j.rser.2011.07.025
  14. Cirujeda, A., Pueyo, J., Moreno, M. M., Moreno, C., Villena, J., López-Marín, J., ... & Pardo, G. (2024). Weed Control in Perennial Crops Using Hydromulch Compositions Based on the Circular Economy: Field Trial Results. Journal of Crop Health, 76(5), 1101-1116. https://doi.org/10.1007/s10343-024-01012-9
  15. Clements, D. R., & Jones, V. L. (2021). Ten Ways That Weed Evolution Defies Human Management Efforts Amidst a Changing Climate. Agronomy, 11(2), 284. https://doi.org/10.3390/agronomy11020284
  16. Egan, J. F., Maxwell, B. D., Mortensen, D. A., Ryan, M. R., & Smith, R. G. (2011). 2, 4-dichlorophenoxyacetic acid (2, 4-D)–resistant crops and the potential for evolution of 2, 4-D–resistant weeds. Proceedings of the National Academy of Sciences, 108(11), E37-E37. https://doi.org/10.1073/pnas.1017414108
  17. FAO. (2024). Food and Agriculture Organization. Available from: www.fao.org
  18. Fishkis, O., & Koch, H. J. (2022). Comparison of mechanical vs. chemical weed control in sugar beet-environmental effects: soil erosion, earthworms, CO2e-emissions. Sugar Industry, 147(6), 352-359. https://doi.org/10.36961/si28805
  19. Formaglio, G., Veldkamp, E., Duan, X., Tjoa, A., & Corre, M. D. (2020). Herbicide weed control increases nutrient leaching as compared to mechanical weeding in a large-scale oil palm plantation. Biogeosciences, 17, 5243–5262. https://doi.org/10.5194/bg-17-5243-2020
  20. Ghasemi Mobtaker, H., Akram, A., & Keyhani, A. (2012). Energy use and sensitivity analysis of energy inputs for alfalfa production in Iran. Energy for Sustainable Development, 16(1), 84-89. https://doi.org/10.1016/j.esd.2011.10.009
  21. Genitsariotis, M., Chlioumis, G., Tsarouhas, B., Tsatsarelis, K., & Sfakiotakis, E. (1998). Energy and nutrient inputs and outputs of a typical olive orchard in northern Greece. Paper presented at the International Conference on Integrated Fruit Production 525. https://doi.org/10.17660/ActaHortic.2000.525.66
  22. Gökdoğan, O., & Erdoğan, O. (2018). Evaluation of energy balance in organic olive (Olea europaea) production in Turkey. Erwerbs-Obstbau, 60(1), 47-52. https://doi.org/10.1007/s10341-017-0338-6
  23. Guzmán, G. I., & Alonso, A. M. (2008). A comparison of energy use in conventional and organic olive oil production in Spain. Agricultural Systems, 98(3), 167-176. https://doi.org/10.1016/j.agsy.2008.06.004
  24. Hemmati, A., Tabatabaeefar, A., & Rajabipour, A. (2013). Comparison of energy flow and economic performance between flat land and sloping land olive orchards. Energy, 61, 472-478. https://doi.org/10.1016/j.energy.2013.09.006
  25. Hossein, H. Y., Azizpanah, A., Namdari, M., & Shirkhani, H. (2024). Environmental life cycle assessment of corn production in tropical regions. Scientific Reports, 14(1), 20036. https://doi.org/10.1038/s41598-024-70923-4
  26. Htwe, T., Sinutok, S., Chotikarn, P., Amin, N., Akhtaruzzaman, M., Techato, K., & Hossain, T. (2021). Energy use efficiency and cost-benefits analysis of rice cultivation: A study on conventional and alternative methods in Myanmar. Energy, 214, 119104. https://doi.org/10.1016/j.energy.2020.119104
  27. IRIMO. (2024). Iran Meteorological Organization. irimo.ir
  28. Khan, S., & Hanjra, M. A. (2009). Footprints of water and energy inputs in food production–Global perspectives. Food Policy, 34(2), 130-140. https://doi.org/10.1016/j.foodpol.2008.09.001
  29. Khoshnevisan, B., Shariati, H. M., Rafiee, S., & Mousazadeh, H. (2014). Comparison of energy consumption and GHG emissions of open field and greenhouse strawberry production. Renewable and Sustainable Energy Reviews, 29, 316-324. https://doi.org/10.1016/j.rser.2013.08.098
  30. Kulak, M., Nemecek, T., Frossard, E., Chable, V., & Gaillard, G. (2015). Life cycle assessment of bread from several alternative food networks in Europe. Journal of Cleaner Production, 90, 104-113. https://doi.org/10.1016/j.jclepro.2014.10.060
  31. Kumar, A., Tirkey, J. V., & Shukla, S. K. (2021). Comparative energy and economic analysis of different vegetable oil plants for biodiesel production in India. Renewable Energy, 169, 266-282. https://doi.org/10.1016/j.renene.2020.12.128
  32. Langgut, D., Cheddadi, R., Carrión, J. S., Cavanagh, M., Colombaroli, D., Eastwood, W. J., ... & Woodbridge, J. (2019). The origin and spread of olive cultivation in the Mediterranean Basin: The fossil pollen evidence. The Holocene, 29(5), 902-922. https://doi.org/10.1177/0959683619826654
  33. Loddo, D., McElroy, J. S., & Giannini, V. (2021). Problems and perspectives in weed management. Italian Journal of Agronomy, 16(4), 1854. https://doi.org/10.4081/ija.2021.1854
  34. MacLaren, C., Storkey, J., Menegat, A., Metcalfe, H., & Dehnen-Schmutz, K. (2020). An ecological future for weed science to sustain crop production and the environment. A review. Agronomy for Sustainable Development, 40, 1-29. https://doi.org/10.1007/s13593-020-00631-6
  35. Mairech, H., López-Bernal, Á., Moriondo, M., Dibari, C., Regni, L., Proietti, P., …. & Testi, L. (2020). Is new olive farming sustainable? A spatial comparison of productive and environmental performances between traditional and new olive orchards with the model OliveCan. Agricultural Systems, 181, 102816. https://doi.org/10.1016/j.agsy.2020.102816
  36. MAJ. (2024). Ministry of Agriculture Jihad of Iran. Available from: www.maj.ir
  37. McErlich, A. F., & Boydston, R. A. (2014). Current State of Weed Management in Organic and Conventional Cropping Systems. In: Young, S., Pierce, F. (eds) Automation: The Future of Weed Control in Cropping Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7512-1_2
  38. Mohammadshirazi, A., Akram, A., Rafiee, S., & Kalhor, E. B. (2014). Energy and cost analyses of biodiesel production from waste cooking oil. Renewable and Sustainable Energy Reviews, 33, 44-49. https://doi.org/10.1016/j.rser.2014.01.067
  39. Mohanty, L., Nanda, S., Mishra, S., & Padhiary, A. (2020). Review of research on INM and various weed control practices in rice (Oryza sativa)-Groundnut (Arachis hypogaea L.) cropping system under irrigated medium land situation. International Journal of Chemical Studies, 8(5), 1283-1289. https://doi.org/10.5958/0976-4038.2014.00601.0
  40. Moosavi-Nezhad, M., Salehi, R., Aliniaeifard, S., Winans, K. S., & Nabavi-Pelesaraei, A. (2022). An analysis of energy use and economic and environmental impacts in conventional tunnel and LED-equipped vertical systems in healing and acclimatization of grafted watermelon seedlings. Journal of Cleaner Production, 361, 132069. https://doi.org/10.1016/j.jclepro.2022.132069
  41. Mostashari-Rad, F., Nabavi-Pelesaraei, A., Soheilifard, F., Hosseini-Fashami, F., & Chau, K. W. (2019). Energy optimization and greenhouse gas emissions mitigation for agricultural and horticultural systems in Northern Iran. Energy, 186, 115845. https://doi.org/10.1016/j.energy.2019.07.175
  42. Mousavi-Avval, S. H., Rafiee, S., Sharifi, M., Hosseinpour, S., Notarnicola, B., Tassielli, G., & Renzulli, P. A. (2017). Application of multi-objective genetic algorithms for optimization of energy, economics and environmental life cycle assessment in oilseed production. Journal of Cleaner Production, 140, 804-815. https://doi.org/10.1016/j.jclepro.2016.03.075
  43. Namdari, M., Rafiee, S., Notarnicola, B., Tassielli, G., Renzulli, P. A., & Hosseinpour, S. (2024). Use of LCA indicators to assess Iranian sugar production systems: Case study-Hamadan Province. Biomass Conversion and Biorefinery, 14(5), 6759-6772. https://doi.org/10.1007/s13399-022-02982-4
  44. Naderi, S., Raini, M. G. N., & Taki, M. (2020). Measuring the energy and environmental indices for apple (production and storage) by life cycle assessment (case study: Semirom county, Isfahan, Iran). Environmental and sustainability indicators, 6, 100034. https://doi.org/10.1016/j.indic.2020.100034
  45. Nikkhah, A., Khojastehpour, M., Emadi, B., Taheri-Rad, A., & Khorramdel, S. (2015). Environmental impacts of peanut production system using life cycle assessment methodology. Journal of Cleaner Production, 92, 84-90. https://doi.org/10.1016/j.jclepro.2014.12.048
  46. Ozkan, B., Akcaoz, H., & Fert, C. (2004a). Energy input–output analysis in Turkish agriculture. Renewable Energy, 29(1), 39-51. https://doi.org/10.1016/S0960-1481(03)00135-6
  47. Ozkan, B., Kurklu, A., & Akcaoz, H. (2004b). An input–output energy analysis in greenhouse vegetable production: a case study for Antalya region of Turkey. Biomass and Bioenergy, 26(1), 89-95. https://doi.org/10.1016/S0961-9534(03)00080-1
  48. Özpinar, S. (2020). Energy Use and Cost Analysis of Olive under Flat and Sloping Growing Conditions. ÇOMÜ Ziraat Fakültesi Dergisi, 8(1), 125-135. https://doi.org/10.33202/comuagri.664249
  49. Pergola, M., Favia, M., Palese, A. M., Perretti, B., Xiloyannis, C., & Celano, G. (2013). Alternative management for olive orchards grown in semi-arid environments: An energy, economic and environmental analysis. Scientia Horticulturae, 162, 380-386. https://doi.org/10.1016/j.scienta.2013.08.031
  50. Perveen, S., Yousaf, M., Mushtaq, M. N., Sarwar, N., Khan, M. Y., & Mahmood, S. (2019). Bioherbicidal potential of some allelopathic agroforestry and fruit plant species against Lepidium sativum. Soil and Environment, 38(1), 119-126. https://doi.org/10.25252/se/19/71655
  51. Powles, S. B., & Yu, Q. (2010). Evolution in action: plants resistant to herbicides. Annual Review of Plant Biology, 61, 317-347. https://doi.org/10.1146/annurev-arplant-042809-112119
  52. Radjabov, J., Troyanovskaya, I., Dvoryashina, T., Vanzha, V., & Akhtyamova, L. (2025). Impact of weed control methods on corn yield and soil fertility conservation. XI International Conference on Advanced Agritechnologies, Environmental Engineering and Sustainable Development. EDP Sciences. Beijing, China. https://doi.org/10.1051/e3sconf/202561302003
  53. Rahmani, A., Parashkoohi, M. G., & Zamani, D. M. (2022). Sustainability of environmental impacts and life cycle energy and economic analysis for different methods of grape and olive production. Energy Reports, 8, 2778-2792. https://doi.org/10.1016/j.egyr.2022.01.197
  54. Rajaeifar, M. A., Akram, A., Ghobadian, B., Rafiee, S., & Heidari, M. D. (2014). Energy-economic life cycle assessment (LCA) and greenhouse gas emissions analysis of olive oil production in Iran. Energy, 66, 139-149. https://doi.org/10.1016/j.energy.2013.12.059
  55. Razmjoo, A. A., Sumper, A., & Davarpanah, A. (2019). Development of sustainable energy indexes by the utilization of new indicators: A comparative study. Energy Reports, 5, 375-383. https://doi.org/10.1016/j.egyr.2019.03.006
  56. Riemens, M., Sønderskov, M., Moonen, A. C., Storkey, J., & Kudsk, P. (2022). An integrated weed management framework: a pan-European perspective. European Journal of Agronomy, 133, 126443. https://doi.org/10.1016/j.eja.2021.126443
  57. Rigamonti, L., Grosso, M., & Giugliano, M. (2009). Life cycle assessment for optimising the level of separated collection in integrated MSW management systems. Waste Management, 29(2), 934-944. https://doi.org/10.1016/j.wasman.2008.06.005
  58. Saini, R., Sarmah, A. K., Dutta, R., Paul, S., Sharma, P. K., Choudhary, R., & Kumar, A. (2023). Influence of Integrated Weed and Nutrient Management on Productivity and Profitability of Summer Maize (Zea mays) Under Rainfed Condition of Assam, India. International Journal of Environment and Climate Change, 13(12), 37-45. https://doi.org/10.9734/ijecc/2023/v13i123658
  59. Schröder, J., Aarts, H., Ten Berge, H., Van Keulen, H., & Neeteson, J. (2003). An evaluation of whole-farm nitrogen balances and related indices for efficient nitrogen use. European Journal of Agronomy, 20(1-2), 33-44. https://doi.org/10.1016/S1161-0301(03)00070-4
  60. Settanni, E., Notarnicola, B., & Tassielli, G. (2010). Combining Life Cycle Assessment of food products with economic tools. In Environmental assessment and management in the food industry. 207-218. Elsevier. Sawston, United Kingdom. https://doi.org/10.1533/9780857090225.3.207
  61. Sharifi, S., Hafezi, N., & Aghkhani, M. H. (2025). Investigation, Optimization of Energy Consumption and Yield Modeling of Two Paddy Cultivars with Genetic-Artificial Bee Colony Algorithm. Journal of Agricultural Machinery, 15(2), 145-164. (in Persian with English abstract). https://doi.org/10.22067/jam.2022.77064.1108
  62. Shrestha, J., Timsina, K. P., Subedi, S., Pokhrel, D., & Chaudhary, A. (2019). Sustainable weed management in maize (Zea mays) production: A review in perspective of southern Asia. Turkish Journal of Weed Science, 22(1), 133-143.
  63. Soleymani, M., Asakereh, A., & Safaieenejad, M. (2025). Optimization of Cumulative Energy, Exergy Consumption and Environmental Life Cycle Assessment Modification of Corn Production in Lorestan Province, Iran. Journal of Agricultural Machinery, 15(1), 23-46. https://doi.org/10.22067/jam.2024.86234.1221
  64. Soriano, M. A., Álvarez, S., Landa, B. B., & Gómez, J. A. (2014). Soil properties in organic olive orchards following different weed management in a rolling landscape of Andalusia, Spain. Renewable Agriculture and Food Systems, 29(1), 83-91. https://doi.org/10.1017/S1742170512000361
  65. Stillitano, T., De Luca, A. I., Iofrida, N., Falcone, G., Spada, E., & Gulisano, G. (2017). Economic analysis of olive oil production systems in southern Italy. Calitatea, 18(157), 107.
  66. Terzi, M., Barca, E., Cazzato, E., D’Amico, F. S., Lasorella, C., & Fracchiolla, M. (2021). Effects of Weed Control Practices on Plant Diversity in a Homogenous Olive-Dominated Landscape (South-East of Italy). Plants, 10(6), 1090. https://doi.org/10.3390/plants10061090
  67. Valamoti, S. M., Gkatzogia, E., & Ntinou, M. (2018). Did Greek colonisation bring olive growing to the north? An integrated archaeobotanical investigation of the spread of Olea europaea in Greece from the 7th to the 1st millennium BC. Vegetation History and Archaeobotany, 27, 177-195. https://doi.org/10.1007/s00334-017-0631-1
  68. Vera, I., & Langlois, L. (2007). Energy indicators for sustainable development. Energy, 32(6), 875-882. https://doi.org/10.1016/j.energy.2006.08.006
  69. Yousefi, M., Damghani, A. M., & Khoramivafa, M. (2014). Energy consumption, greenhouse gas emissions and assessment of sustainability index in corn agroecosystems of Iran. Science of the Total Environment, 493, 330-335. https://doi.org/10.1016/j.scitotenv.2014.06.004
  70. Zangeneh, M., Banaeian, N., & Clark, S. (2021). Meta-analysis on energy-use patterns of cropping systems in Iran. Sustainability, 13(7), 3868. https://doi.org/10.3390/su13073868
  71. Zhang, W., Jiang, F., & Ou, J. (2011). Global pesticide consumption and pollution: with China as a focus. Proceedings of the International Academy of Ecology and Environmental Sciences, 1(2), 125-144.
CAPTCHA Image