Document Type : Review Article-en
Authors
- S. Rishikesavan 1
- P. Kannan 2
- S. Pazhanivelan 2
- R. Kumaraperumal 1
- N. Sritharan 3
- D. Muthumanickam 1
- M. Mohamed Roshan Abu Firnass 4
- B. Venkatesh 5
1 Department of Remote Sensing and GIS, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
2 Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
3 Department of Rice, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
4 Department of Soil Science & Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
5 Department of Civil Engineering, Alagappa Chettiar Government College of Engineering and Technology, Karaikudi, Tamil Nadu, India
Abstract
Drones have emerged as a promising technology in precision agriculture, supporting Sustainable Development Goals (SDGs) by enhancing sustainable farming practices, improving food security, and reducing environmental impact. This review article is intended to meticulously analyze the multiple applications of drone technology in agriculture, such as crop health monitoring, pesticide and fertilizer spraying, weed control, and data-driven decision-making for farm optimization. It emphasizes the role of drones in precision spraying, promoting targeted interventions, and minimizing environmental impact compared to conventional methods. Drones play a vital role in weed management and crop health assessment. The paper focuses on the importance of data collected by drones to acquire the necessary information for decision-making concerning irrigation, fertilization, and overall farm management. However, using Unmanned Aerial Vehicles (UAVs) in agriculture faces challenges caused by batteries and their life, flight time, and connectivity issues, particularly in remote areas. There are legal challenges whereby regulatory frameworks and restrictions are present in different regions that affect the operation of drones. With the help of continuous research and development initiatives, the challenges depicted above could be solved, and the fullest potential of drones can be tapped for achieving Sustainable Agriculture.
Keywords
- Crop monitoring
- Data-driven decision making
- Precision agriculture
- Resource optimization
- Unmanned Aerial Vehicles (UAVs)
Main Subjects
©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)
- Ajakaiye, O. B. (2023). Drone Agricultural Technology: Implications for Sustainable Food Production in Africa. African Journal of Agricultural Science and Food Research, 9(1), 36-44. Retrieved from https://publications.afropolitanjournals.com/index.php/ajasfr/article/view/397
- Ali, M., Al-Ani, A., Eamus, D., & Tan, D. K. (2017). Leaf nitrogen determination using non-destructive techniques–A review. Journal of Plant Nutrition, 40(7), 928-953. https://doi.org/10.1080/01904167.2016.1143954
- Alkhamis, W. (2021). Emirati brothers develop drone that can pollinate a date palm tree in less than a minute. The National. Retrieved from: https://www.thenationalnews.com/uae/2021/11/14/emirati-brothers-develop-drone-that-can-pollinate-a-date-palm-tree-in-less-than-a-minute
- Altawy, R., & Youssef, A. M. (2016). Security, privacy, and safety aspects of civilian drones: A survey. ACM Transactions on Cyber-Physical Systems, 1(2), 1-25. https://doi.org/10.1145/3001836
- Aslan, M. F., Durdu, A., Sabanci, K., Ropelewska, E., & Gültekin, S. S. (2022). A comprehensive survey of the recent studies with UAV for precision agriculture in open fields and greenhouses. Applied Sciences, 12(3), 1047. https://doi.org/10.3390/app12031047
- Balasubramaniam, P., & Ananthi, V. (2016). Segmentation of nutrient deficiency in incomplete crop images using intuitionistic fuzzy C-means clustering algorithm. Nonlinear Dynamics, 83, 849-866. https://doi.org/10.1007/s11071-015-2372-y
- Baradaran Motie, J., Saeidirad, M. H. & Jafarian, M. (2023). Identification of Sunn-pest affected (Eurygaster Integriceps put.) wheat plants and their distribution in wheat fields using aerial imaging. Ecological Informatics, 76, p.102146. https://doi.org/10.1016/j.ecoinf.2023.102146
- Barbedo, J. G. A. (2019). A review on the use of unmanned aerial vehicles and imaging sensors for monitoring and assessing plant stresses. Drones, 3(2), 40. https://doi.org/10.3390/drones3020040
- Barbedo, J. G. A., & Koenigkan, L. V. (2018). Perspectives on the use of unmanned aerial systems to monitor cattle. Outlook on agriculture, 47(3), 214-222. https://doi.org/10.1177/0030727018781876
- Berni, J. A., Zarco-Tejada, P. J., Suárez, L., & Fereres, E. (2009). Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Transactions on geoscience and Remote Sensing, 47(3), 722-738. https://doi.org/10.1109/TGRS.2008.2010457
- Bongiovanni, R., & Lowenberg-DeBoer, J. (2004). Precision agriculture and sustainability. Precision Agriculture, 5, 359-387. https://doi.org/10.1023/B:PRAG.0000040806.39604.aa
- Broussard, M. A., Coates, M., & Martinsen, P. (2023). Artificial pollination technologies: A review. Agronomy, 13(5), 1351. https://doi.org/10.3390/agronomy13051351
- Calderón Madrid, R., Navas Cortés, J. A., Lucena León, C., & Zarco-Tejada, P. J. (2013). High-resolution hyperspectral and thermal imagery acquired from UAV platforms for early detection of Verticillium wilt using fluorescence, temperature and narrow-band indices. Remote Sensing of Environment, 139, 231-245. https://doi.org/10.1016/j.rse.2013.07.031
- Capolupo, A., Kooistra, L., Berendonk, C., Boccia, L., & Suomalainen, J. (2015). Estimating plant traits of grasslands from UAV-acquired hyperspectral images: a comparison of statistical approaches. ISPRS International Journal of Geo-Information, 4(4), 2792-2820. https://doi.org/10.3390/ijgi4042792
- Chapman, S. C., Merz, T., Chan, A., Jackway, P., Hrabar, S., Dreccer, M. F., Holland, E., Zheng, B., Ling, T. J., & Jimenez-Berni, J. (2014). Pheno-copter: a low-altitude, autonomous remote-sensing robotic helicopter for high-throughput field-based phenotyping. Agronomy, 4(2), 279-301. https://doi.org/10.3390/agronomy4020279
- Chen, C. J., Huang, Y. Y., Li, Y. S., Chen, Y. C., Chang, C. Y., & Huang, Y. M. (2021). Identification of fruit tree pests with deep learning on embedded drone to achieve accurate pesticide spraying. IEEE Access, 9, 21986-21997. https://doi.org/10.1109/ACCESS.2021.3056082
- Chen, P., Ouyang, F., Wang, G., Qi, H., Xu, W., Yang, W., Zhang, Y., & Lan, Y. (2021). Droplet distributions in cotton harvest aid applications vary with the interactions among the unmanned aerial vehicle spraying parameters. Industrial Crops and Products, 163, 113324. https://doi.org/10.1016/j.indcrop.2021.113324
- Christiansen, M. P., Laursen, M. S., Jørgensen, R. N., Skovsen, S., & Gislum, R. (2017). Designing and testing a UAV mapping system for agricultural field surveying. Sensors, 17(12), 2703. https://doi.org/10.3390/s17122703
- Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79-97. https://doi.org/10.1016/j.isprsjprs.2014.02.013
- Dampage, U., Navodana, M. D. R., Lakal, U. G. S., & Warusavitharana, A. M. (2020, October). Smart agricultural seeds spreading drone for soft soil paddy fields. In 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON) (pp. 373-377). https://doi.org/10.1109/GUCON48875.2020.9231124
- D'Sa, R., Jenson, D., Henderson, T., Kilian, J., Schulz, B., Calvert, M., Heller, T., & Papanikolopoulos, N. (2016). SUAV: Q-An improved design for a transformable solar-powered UAV. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). https://doi.org/10.1109/IROS.2016.7759260
- Dash, J. P., Watt, M. S., Pearse, G. D., Heaphy, M., & Dungey, H. S. (2017). Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 1-14. https://doi.org/10.1016/j.isprsjprs.2017.07.007
- Dayana, K., Ramesh, T., Avudaithai, S., Sebastian, P., & Selvaraj, R. (2022). Feasibility of using drone for foliar spraying of nutrients in irrigated green gram (Vigna radiata). Ecology, Environment and Conservation, 28, 64-64.
- Delavarpour, N., Koparan, C., Nowatzki, J., Bajwa, S., & Sun, X. (2021). A technical study on UAV characteristics for precision agriculture applications and associated practical challenges. Remote Sensing, 13(6), 1204. https://doi.org/10.3390/rs13061204
- Dezordi, L. R., Aquino, L. A. d., Aquino, R. F. B. d. A., Clemente, J. M., & Assunção, N. S. (2016). Diagnostic methods to assess the nutritional status of the carrot crop. Revista Brasileira de Ciência do Solo, 40. https://doi.org/10.1590/18069657rbcs20140813
- Dhillon, R., & Moncur, Q. (2023). Small-scale farming: A review of challenges and potential opportunities offered by technological advancements. Sustainability, 15(21), 15478. https://doi.org/10.3390/su152115478
- Dileep, M., Navaneeth, A., Ullagaddi, S., & Danti, A. (2020). A study and analysis on various types of agricultural drones and its applications. 2020 fifth international conference on research in computational intelligence and communication networks (ICRCICN), https://doi.org/10.1109/ICRCICN50933.2020.9296195
- Dündar, Ö., Bilici, M., & Ünler, T. (2020). Design and performance analyses of a fixed wing battery VTOL UAV. Engineering Science and Technology, an International Journal, 23(5), 1182-1193. https://doi.org/10.1016/j.jestch.2020.02.002
- Dutta, G., & Goswami, P. (2020). Application of drone in agriculture: A review. International Journal of Chemical Studies, 8(5), 181-187. https://doi.org/10.22271/chemi.2020.v8.i5d.10529
- Dutta, S., Singh, A. K., Mondal, B. P., Paul, D., & Patra, K. (2023). Digital Inclusion of the Farming Sector Using Drone Technology. https://doi.org/10.5772/intechopen.108740
- Elmeseiry, N., Alshaer, N., & Ismail, T. (2021). A detailed survey and future directions of unmanned aerial vehicles (uavs) with potential applications. Aerospace, 8(12), 363. https://doi.org/10.3390/aerospace8120363
- Elouarouar, S., & Medromi, H. (2022). Multi-rotors unmanned aerial vehicles power supply and energy management. In E3S web of conferences (Vol. 336, p. 00068). EDP Sciences. https://doi.org/10.1051/e3sconf/202233600068
- Emimi, M., Khaleel, M., & Alkrash, A. (2023). The current opportunities and challenges in drone technology. International Journal of Electrical Engineering and Sustainability, 74-89. https://ijees.org/index.php/ijees/article/view/47
- Erdogan, P. (2023). The Importance of Agricultural Aviation in Plant Protection. Current Topics in Aeronautics, 127.
- Ennouri, K., & Kallel, A. (2019). Remote sensing: an advanced technique for crop condition assessment. Mathematical Problems in Engineering, 2019. https://doi.org/10.1155/2019/9404565
- Freeman, P. K., & Freeland, R. S. (2015). Agricultural UAVs in the US: potential, policy, and hype. Remote Sensing Applications: Society and Environment, 2, 35-43. https://doi.org/10.1016/j.rsase.2015.10.002
- Ferraz, M. A. J., Santiago, A. G. D. S. G., Bruzi, A. T., & Vilela, N. J. D. (2024). Defoliation Categorization in Soybean with Machine Learning Algorithms and UAV Multispectral Data. https://doi.org/10.3390/agriculture14112088
- Frouin, R. J., Franz, B. A., Ibrahim, A., Knobelspiesse, K., Ahmad, Z., Cairns, B., Chowdhary, J., Dierssen, H. M., Tan, J., & Dubovik, O. (2019). Atmospheric correction of satellite ocean-color imagery during the PACE era. Frontiers in Earth Science, 7, 145. https://doi.org/10.3389/feart.2019.00145
- Gabriel, J. L., Zarco-Tejada, P. J., López-Herrera, P. J., Pérez-Martín, E., Alonso-Ayuso, M., & Quemada, M. (2017). Airborne and ground level sensors for monitoring nitrogen status in a maize crop. Biosystems Engineering, 160, 124-133. https://doi.org/10.1016/j.biosystemseng.2017.06.003
- García-Munguía, A., Guerra-Ávila, P. L., Islas-Ojeda, E., Flores-Sánchez, J. L., Vázquez-Martínez, O., García-Munguía, A. M., & García-Munguía, O. (2024). A Review of Drone Technology and Operation Processes in Agricultural Crop Spraying. Drones, 8(11), 674. https://doi.org/10.3390/drones8110674
- Garg, P. K. (2022). Characterisation of Fixed-Wing Versus Multirotors UAVs/Drones. Journal of Geomatics, 16(2), 152-159. https://doi.org/10.58825/jog.2022.16.2.44
- Gopal, R., Singh, V., & Aggarwal, A. (2021). Impact of online classes on the satisfaction and performance of students during the pandemic period of COVID 19. Education and Information Technologies, 26(6), 6923-6947. https://doi.org/10.1007/s10639-021-10523-1
- Guzman, L. M., Chamberlain, S. A., & Elle, E. (2021). Network robustness and structure depend on the phenological characteristics of plants and pollinators. Ecology and Evolution, 11(19), 13321-13334. https://doi.org/10.1002/ece3.8055
- Hafeez, A., Husain, M. A., Singh, S., Chauhan, A., Khan, M. T., Kumar, N., Chauhan, A., & Soni, S. (2022). Implementation of drone technology for farm monitoring & pesticide spraying: A review. Information processing in Agriculture, 10(2), 192-203. https://doi.org/10.1016/j.inpa.2022.02.002
- Hardin, P. J., & Jensen, R. R. (2011). Small-scale unmanned aerial vehicles in environmental remote sensing: Challenges and opportunities. GIScience & Remote Sensing, 48(1), 99-111. https://doi.org/10.2747/1548-1603.48.1.99
- Herwitz, S., Johnson, L., Dunagan, S., Higgins, R., Sullivan, D., Zheng, J., Lobitz, B., Leung, J., Gallmeyer, B., & Aoyagi, M. (2004). Imaging from an unmanned aerial vehicle: agricultural surveillance and decision support. Computers and Electronics in Agriculture, 44(1), 49-61. https://doi.org/10.1016/j.compag.2004.02.006
- Hosseini, S. A., Masoudi, H., Sajadiye, S. M., & Abdanan Mehdizadeh, S. (2021). Nitrogen Estimation in Sugarcane Fields from Aerial Digital Images using Artificial Neural Network. Environmental Engineering and Management Journal, 20(5), 713-723. https://doi.org/10.30638/eemj.2021.068
- Hoffmann, H., Nieto, H., Jensen, R., Guzinski, R., Zarco-Tejada, P., & Friborg, T. (2016). Estimating evaporation with thermal UAV data and two-source energy balance models. Hydrology and Earth System Sciences, 20(2), 697-713. https://doi.org/10.5194/hess-20-697-2016
- Huang, Y., Hoffmann, W. C., Lan, Y., Wu, W., & Fritz, B. K. (2009). Development of a spray system for an unmanned aerial vehicle platform. Applied Engineering in Agriculture, 25(6), 803-809. https://doi.org/10.13031/2013.29229
- Huang, Y., Reddy, K. N., Fletcher, R. S., & Pennington, D. (2018). UAV low-altitude remote sensing for precision weed management. Weed Technology, 32(1), 2-6. https://doi.org/10.1017/wet.2017.89
- Hunt, E. R., Cavigelli, M., Daughtry, C. S., Mcmurtrey, J. E., & Walthall, C. L. (2005). Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precision Agriculture, 6, 359-378. https://doi.org/10.1007/s11119-005-2324-5
- Inoue, S., Ito, A., & Yonezawa, C. (2020). Mapping Paddy fields in Japan by using a Sentinel-1 SAR time series supplemented by Sentinel-2 images on Google Earth Engine. Remote Sensing, 12(10), 1622. https://doi.org/10.3390/rs12101622
- Ishihara, M., Inoue, Y., Ono, K., Shimizu, M., & Matsuura, S. (2015). The impact of sunlight conditions on the consistency of vegetation indices in croplands—Effective usage of vegetation indices from continuous ground-based spectral measurements. Remote Sensing, 7(10), 14079-14098. https://doi.org/10.3390/rs71014079
- Islam, N., Rashid, M. M., Pasandideh, F., Ray, B., Moore, S., & Kadel, R. (2021). A review of applications and communication technologies for internet of things (IoT) and unmanned aerial vehicle (UAV) based sustainable smart farming. Sustainability, 13(4), 1821. https://doi.org/10.3390/su13041821
- Jia, L., Chen, X., Zhang, F., Buerkert, A., & Römheld, V. (2004). Use of digital camera to assess nitrogen status of winter wheat in the northern China plain. Journal of Plant Nutrition, 27(3), 441-450. https://doi.org/10.1081/PLN-120028872
- Joshi, P., Sandhu, K. S., Dhillon, G. S., Chen, J., & Bohara, K. (2024). Detection and monitoring of wheat diseases using unmanned aerial vehicles (UAVs). Computers and Electronics in Agriculture, 224, 109158. https://doi.org/10.1016/j.compag.2024.109158
- Kallimani, C., Heidarian, R., van Evert, F. K., Rijk, B., & Kooistra, L. (2020). UAV-based Multispectral & Thermal dataset for exploring the diurnal variability, radiometric & geometric accuracy for precision agriculture. Open Data Journal for Agricultural Research, 6, 1-7. https://doi.org/10.18174/odjar.v6i0.16317
- Kalaiselvi, P., Chaurasia, J., Krishnaveni, A., Krishnamoorthi, A., Singh, A., Kumar, V., ... & Labanya, R. (2024). Harvesting Efficiency: The Rise of Drone Technology in Modern Agriculture. Journal of Scientific Research and Reports, 30(6), 191-207. https://doi.org/10.9734/jsrr/2024/v30i62033
- Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and electronics in agriculture, 147, 70-90. https://doi.org/10.1016/j.compag.2018.02.016
- Kaniska, K., Jagadeeswaran, R., Kumaraperumal, R., Ragunath, K. P., Kannan, B., Muthumanickam, D., & Pazhanivelan, S. (2022). Impact of Drone Spraying of Nutrients on Growth and Yield of Maize Crop. International Journal of Environment and Climate Change, 12(11), 274-282. https://doi.org/10.9734/ijecc/2022/v12i1130972
- Kedari, S., Lohagaonkar, P., Nimbokar, M., Palve, G., & Yevale, P. (2016). Quadcopter-a smarter way of pesticide spraying. Imperial Journal of Interdisciplinary Research, 2(6), 1257-1260.
- Khanpara, B. M., Patel, B. P., Parmar, N. B., & Mehta, T. D. (2024). Transforming Agriculture with Drones: Applications, Challenges and Implementation Strategies. Journal of Scientific Research and Reports, 30(8), 792-802. https://doi.org/10.9734/jsrr/2024/v30i82299
- Khaspuria, G., Khandelwal, A., Agarwal, M., Bafna, M., Yadav, R., & Yadav, A. (2024). Adoption of Precision Agriculture Technologies among Farmers: A Comprehensive Review. Journal of Scientific Research and Reports, 30(7), 671-686. https://doi.org/10.9734/jsrr/2024/v30i72180
- Kim, S. S., Kim, T. H., & Sim, J. S. (2019). Applicability assessment of UAV mapping for disaster damage investigation in Korea. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 209-214. https://doi.org/10.5194/isprs-archives-XLII-3-W8-209-2019
- Koondee, P., Saengprachathanarug, K., Posom, J., Watyotha, C., & Wongphati, M. (2019, August). Study of field capacity and variables of UAV operation time during spraying hormone fertilizer in sugarcane field. In IOP Conference Series: Earth and Environmental Science (Vol. 301, No. 1, p. 012020). IOP Publishing. https://doi.org/10.14456/apst.2023.93
- Lee, K., Sudduth, K. A., & Zhou, J. (2024). Evaluating UAV-Based Remote Sensing for Hay Yield Estimation. Sensors, 24(16), 5326. https://doi.org/10.3390/s24165326
- Leite‐Filho, A. T., de Sousa Pontes, V. Y., & Costa, M. H. (2019). Effects of deforestation on the onset of the rainy season and the duration of dry spells in southern Amazonia. Journal of Geophysical Research: Atmospheres, 124(10), 5268-5281. https://doi.org/10.1029/2018JD029537
- Li, L., Fan, Y., Huang, X., & Tian, L. (2016). Real-time UAV weed scout for selective weed control by adaptive robust control and machine learning algorithm. 2016 ASABE Annual International Meeting. https://doi.org/10.13031/aim.20162462667
- Liebisch, F., Kirchgessner, N., Schneider, D., Walter, A., & Hund, A. (2015). Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach. Plant Methods, 11, 1-20. https://doi.org/10.1186/s13007-015-0048-8
- Lou, Z., Xin, F., Han, X., Lan, Y., Duan, T., & Fu, W. (2018). Effect of unmanned aerial vehicle flight height on droplet distribution, drift and control of cotton aphids and spider mites. Agronomy, 8(9), 187. https://doi.org/10.3390/agronomy8090187
- Lu, J., Dai, E., Miao, Y., & Kusnierek, K. (2024). Developing a new active canopy sensor-and machine learning-based in-season rice nitrogen status diagnosis and recommendation strategy. Field Crops Research, 317, 109540. https://doi.org/10.1016/j.fcr.2024.109540
- M. Tahat, M., M. Alananbeh, K., A. Othman, Y., & I. Leskovar, D. (2020). Soil health and sustainable agriculture. Sustainability, 12(12), 4859. https://doi.org/10.3390/su12124859
- Ma, Z., Zhu, X., Zhou, Z., Zou, X., & Zhao, X. (2019). A lateral-directional control method for high aspect ratio full-wing UAV and flight tests. Applied Sciences, 9(20), 4236. https://doi.org/10.3390/app9204236
- Malenovský, Z., Lucieer, A., King, D. H., Turnbull, J. D., & Robinson, S. A. (2017). Unmanned aircraft system advances health mapping of fragile polar vegetation. Methods in Ecology and Evolution, 8(12), 1842-1857. https://doi.org/10.1111/2041-210X.12833
- Manfreda, S., McCabe, M. F., Miller, P. E., Lucas, R., Pajuelo Madrigal, V., Mallinis, G., Ben Dor, E., Helman, D., Estes, L., & Ciraolo, G. (2018). On the use of unmanned aerial systems for environmental monitoring. Remote Sensing, 10(4), 641. https://doi.org/10.1111/2041-210X.12833
- Marinello, F., Pezzuolo, A., Chiumenti, A., & Sartori, L. (2016). Technical analysis of unmanned aerial vehicles (drones) for agricultural applications. Engineering for Rural Development, 15(2), 870-875. http://hdl.handle.net/11390/1099198
- Martos, V., Ahmad, A., Cartujo, P., & Ordoñez, J. (2021). Ensuring agricultural sustainability through remote sensing in the era of agriculture 5.0. Applied Sciences, 11(13), 5911. https://doi.org/10.3390/app11135911
- Memisoglu, O. (2019). Justification of Civilian Use of Drones and International Security: Comparison between the The United States and the European Union. https://doi.org/10.48676/unibo/amsdottorato/8899
- Merwe, D., Burchfield, D., Witt, T., Price, K., & Sharda, A. (2020). Chapter One—Drones in agriculture. Advances in Agronomy, 162, 1-30. https://doi.org/10.1016/bs.agron.2020.03.001
- Mogili, U. R., & Deepak, B. (2018). Review on the application of drone systems in precision agriculture. Procedia Computer Science, 133, 502-509. https://doi.org/10.1016/j.procs.2018.07.063
- Mohamed, M. B., Shukla, A. K., Keerthika, A., & Mehta, R. S. (2023). Pollination biology in henna evidences from semi-arid region-of Rajasthan. Indian Journal of Ecology, 50(3), 720-724.
- Mohsan, S. A. H., Zahra, Q. u. A., Khan, M. A., Alsharif, M. H., Elhaty, I. A., & Jahid, A. (2022). Role of drone technology helping in alleviating the COVID-19 pandemic. Micromachines, 13(10), 1593. https://doi.org/10.3390/mi13101593
- Monteiro, N. O. D. C., de Alencar, E. R., Souza, N. O. S., & Leão, T. P. (2021). Ozonized water in the preconditioning of corn seeds: physiological quality and field performance. Ozone: Science & Engineering, 43(5), 436-450. https://doi.org/10.1080/01919512.2020.1836472
- Mulero-Pázmány, M., Stolper, R., Van Essen, L., Negro, J. J., & Sassen, T. (2014). Remotely piloted aircraft systems as a rhinoceros anti-poaching tool in Africa. PloS one, 9(1), e83873. https://doi.org/10.1371/journal.pone.0083873
- Nandhini, D. U., Thiyagarajan, M., & Somasundaram, E. (2022). Soil fertility of rice-blackgram cropping sequence as influenced by different organic sources of nutrients. Bangladesh Journal of Botany, 51(2), 289-296. https://doi.org/10.3329/bjb.v51i2.60426
- Nauš, J., Prokopová, J., Řebíček, J., & Špundová, M. (2010). SPAD chlorophyll meter reading can be pronouncedly affected by chloroplast movement. Photosynthesis Research, 105, 265-271. https://doi.org/10.1007/s11120-010-9587-z
- Nhamo, L., Mabhaudhi, T., & Modi, A. (2019). Preparedness or repeated short-term relief aid? Building drought resilience through early warning in southern Africa. Water Sa, 45(1), 75-85. https://doi.org/10.4314/wsa.v45i1.09
- Nhamo, L., Magidi, J., Nyamugama, A., Clulow, A. D., Sibanda, M., Chimonyo, V. G., & Mabhaudhi, T. (2020). Prospects of improving agricultural and water productivity through unmanned aerial vehicles. Agriculture, 10(7), 256. https://doi.org/10.3390/agriculture10070256
- Ni, J., Yao, L., Zhang, J., Cao, W., Zhu, Y., & Tai, X. (2017). Development of an unmanned aerial vehicle-borne crop-growth monitoring system. Sensors, 17(3), 502. https://doi.org/10.3390/s17030502
- Niu, H., Zhao, T., Wang, D., & Chen, Y. (2019). Estimating evapotranspiration with UAVs in agriculture: A review. 2019 ASABE Annual International Meeting.:1901226. https://doi.org/10.13031/aim.201901226
- Olson, D., & Anderson, J. (2021). Review on unmanned aerial vehicles, remote sensors, imagery processing, and their applications in agriculture. Agronomy Journal, 113(2), 971-992. https://doi.org/10.1002/agj2.20595
- Panjaitan, S. D., Dewi, Y. S. K., Hendri, M. I., Wicaksono, R. A., & Priyatman, H. (2022). A drone technology implementation approach to conventional paddy fields application. IEEE Access, 10, 120650-120658. https://doi.org/10.1109/ACCESS.2022.3221188
- Pathak, A. K., Sharma, M., & Nagar, P. K. (2020). A framework for PM2. 5 constituents-based (including PAHs) emission inventory and source toxicity for priority controls: A case study of Delhi, India. Chemosphere, 255, 126971. https://doi.org/10.1016/j.chemosphere.2020.126971
- Paul, P. L. C., Bell, R. W., Barrett-Lennard, E. G., Mainuddin, M., Maniruzzaman, M., & Sarker, K. K. (2022, August). Impact of Different Tillage Systems on the Dynamics of Soil Water and Salinity in the Cultivation of Maize in a Salt-Affected Clayey Soil of the Ganges Delta. In Transforming Coastal Zone for Sustainable Food and Income Security: Proceedings of the International Symposium of ISCAR on Coastal Agriculture, March 16–19, 2021 (pp. 101-116). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-95618-9_8
- Peña, J. M., Torres-Sánchez, J., de Castro, A. I., Kelly, M., & López-Granados, F. (2013). Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PloS one, 8(10), e77151. https://doi.org/10.1371/journal.pone.0077151
- Pongnumkul, S., Chaovalit, P., & Surasvadi, N. (2015). Applications of smartphone-based sensors in agriculture: a systematic review of research. Journal of Sensors, 1, 1953085. https://doi.org/10.1155/2015/195308
- Puri, V., Nayyar, A., & Raja, L. (2017). Agriculture drones: A modern breakthrough in precision agriculture. Journal of Statistics and Management Systems, 20(4), 507-518. https://doi.org/10.1080/09720510.2017.1395171
- Qin, W. C., Qiu, B. J., Xue, X. Y., Chen, C., Xu, Z. F., & Zhou, Q. Q. (2016). Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers. Crop Protection, 85, 79-88. https://doi.org/10.1016/j.cropro.2016.03.018
- Rajabi, M. S., Beigi, P., & Aghakhani, S. (2023). Drone delivery systems and energy management: a review and future trends. Handbook of Smart Energy Systems, 1-19. https://doi.org/10.1007/978-3-030-72322-4_196-1
- Rajagopalan, R. P., & Krishna, R. (2018). Drones: Guidelines, regulations, and policy gaps in India. ICAO Scientific Review: Analytics and Management Research, 1, 53-68.
- Rathod, P. D., & Shinde, G. U. (2023). Autonomous Aerial System (UAV) for Sustainable Agriculture: A Review. International Journal of Environment and Climate Change, 13(8), 1343-1355. https://doi.org/10.9734/ijecc/2023/v13i82080
- Rejeb, A., Abdollahi, A., Rejeb, K., & Treiblmaier, H. (2022). Drones in agriculture: A review and bibliometric analysis. Computers and Electronics in Agriculture, 198, 107017. https://doi.org/10.1016/j.compag.2022.107017
- Ren, Q., Zhang, R., Cai, W., Sun, X., & Cao, L. (2020). Application and development of new drones in agriculture. IOP Conference Series Earth and Environmental Science 440(5):052041. https://doi.org/10.1088/1755-1315/440/5/052041
- Ribeiro, L. F. O., Vitória, E. L. d., Soprani Júnior, G. G., Chen, P., & Lan, Y. (2023). Impact of Operational Parameters on Droplet Distribution Using an Unmanned Aerial Vehicle in a Papaya Orchard. Agronomy, 13(4), 1138.1138. https://doi.org/10.3390/agronomy13041138
- Roldán, J. J., Joossen, G., Sanz, D., Cerro, J. D., & Barrientos, A. (2015). Mini-UAV based sensory system for measuring environmental variables in greenhouses. Sensors, 15(2), 3334-3350. https://doi.org/10.3390/s150203334
- Runde, D. F., Carter, P., Bandura, R., & Ramanujam, S. R. (2019). Innovations in Guarantees for Development. A Report of the CSIS Project on Prosperity and Development. 6-61
- Saeed, A. S., Younes, A. B., Cai, C., & Cai, G. (2018). A survey of hybrid unmanned aerial vehicles. Progress in Aerospace Sciences, 98, 91-105. https://doi.org/10.1016/j.paerosci.2018.03.007
- Sarghini, F., & De Vivo, A. (2017). Interference analysis of an heavy lift multirotor drone flow field and transported spraying system. Chemical Engineering Transactions, 58, 631-636. https://doi.org/10.3303/CET1758106
- Severtson, D., Callow, N., Flower, K., Neuhaus, A., Olejnik, M., & Nansen, C. (2016). Unmanned aerial vehicle canopy reflectance data detects potassium deficiency and green peach aphid susceptibility in canola. Precision Agriculture, 17, 659-677. https://doi.org/10.1007/s11119-016-9442-0
- Shafi, U., Mumtaz, R., García-Nieto, J., Hassan, S., Zaidi, S. A. R., & Iqbal, N. (2019). Precision Agriculture Techniques and Practices: From Considerations to Applications. Sensors, 19, 3796. https://doi.org/10.3390/s19173796
- Simelli, I., & Tsagaris, A. (2015). The Use of Unmanned Aerial Systems (UAS) in Agriculture. HAICTA. Kavala, 730-736. http://ceur-ws.org/Vol-1498/HAICTA_2015_paper83.pdf
- Singh, P. (2023). Drones in Indian Agriculture: Trends, Challenges, and Policy Implications. https://doi.org/10.13140/RG.2.2.29651.35366/2
- Sinha, J. P. (2020). Aerial robot for smart farming and enhancing farmers' net benefit. The Indian Journal of Agricultural Sciences, 90(2), 258-267. https://doi.org/10.56093/ijas.v90i2.98997
- Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of remote sensing in precision agriculture: A review. Remote Sensing, 12(19), 3136. https://doi.org/10.3390/rs12193136
- Stöcker, C., Bennett, R., Nex, F., Gerke, M., & Zevenbergen, J. (2017). Review of the current state of UAV regulations. Remote Sensing, 9(5), 459. https://doi.org/10.3390/rs9050459
- Subramanian, K., Pazhanivelan, S., Srinivasan, G., Santhi, R., & Sathiah, N. (2021). Drones in insect pest management. Frontiers in Agronomy, 3, 640885. https://doi.org/10.3389/fagro.2021.640885
- Swetha, M., Bharath Kumar, K., Sanwal Singh, M., & Urmila, M. (2024).Unmanned aerial vehicles (UAVs): an adoptable technology for precise and smart farming. Discover Internet of Things, 4, 12. https://doi.org/10.1007/s43926-024-00066-5
- Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58-73. https://doi.org/10.1016/j.aiia.2020.04.002
- Ukhurebor, K. E., Adetunji, C. O., Olugbemi, O. T., Nwankwo, W., Olayinka, A. S., Umezuruike, C., & Hefft, D. I. (2022). Precision agriculture: Weather forecasting for future farming. In AI, Edge and IoT-based Smart Agriculture (pp. 101-121). Elsevier. https://doi.org/10.4018/979-8-3693-1471-5.ch008
- Velusamy, P., Rajendran, S., Mahendran, R. K., Naseer, S., Shafiq, M., & Choi, J. G. (2022). Unmanned Aerial Vehicles (UAV) in Precision Agriculture: Applications and Challenges. Energies, 15(1), 217. https://doi.org/10.3390/en15010217
- Vairavan, C., Kamble, B. M., Durgude, A. G., Ingle, S. R., & Pugazenthi, K. (2024). Hyperspectral Imaging of Soil and Crop: A Review. Journal of Experimental Agriculture International, 46(1), 48-61. https://doi.org/10.9734/jeai/2024/v46i12290
- Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236, 111402. https://doi.org/10.1016/j.rse.2019.111402
- Wikifactory. (2020). A virtual round table on how UAVs and robotics can be used to make a difference. In Drones for Change. Retrieved from https://wikifactory.com/@niko11/stories/drones-for-change-a-round-table-on-how-uavs-and-robotics-can-be-used-to-make-a-difference
- Xia, T., Kustas, W. P., Anderson, M. C., Alfieri, J. G., Gao, F., McKee, L., Prueger, J. H., Geli, H. M., Neale, C. M., & Sanchez, L. (2016). Mapping evapotranspiration with high-resolution aircraft imagery over vineyards using one-and two-source modeling schemes. Hydrology and Earth System Sciences, 20(4), 1523-1545. https://doi.org/10.5194/hess-20-1523-2016
- Yakushev, V., & Kanash, E. (2016). Evaluation of wheat nitrogen status by colorimetric characteristics of crop canopy presented in digital images. Journal of Agricultural Informatics, 7(1), 268. https://doi.org/10.17700/jai.2016.7.1.268
- Yang, C., Everitt, J. H., Bradford, J. M., & Murden, D. (2009). Comparison of airborne multispectral and hyperspectral imagery for estimating grain sorghum yield. Transactions of the ASABE (American Society of Agricultural and Biological Engineers, 52, 641-649. https://doi.org/10.13031/2013.26816
- Yao, L., Jiang, Y., Zhiyao, Z., Shuaishuai, Y., & Quan, Q. (2016). A pesticide spraying mission assignment performed by multi-quadcopters and its simulation platform establishment. 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC). https://doi.org/10.1109/CGNCC.2016.7829093
- Zhang, P., Zhang, W., Sun, H. T., He, F. G., Fu, H. B., Qi, L. Q., Yu, L. J., Jin, L. Y., Zhang, B., & Liu, J. S. (2021). Effects of Spray Parameters on the Effective Spray Width of Single-Rotor Drone in Sugarcane Plant Protection. Sugar Tech, 23, 308-315. https://doi.org/10.1007/s12355-020-00890-3
- Zhang, X. Q., Song, X. P., Liang, Y. J., Qin, Z. Q., Zhang, B. Q., Wei, J. J., Li, Y. R., & Wu, J. M. (2020). Effects of spray parameters of drone on the droplet deposition in sugarcane canopy. Sugar Tech, 22, 583-588. https://doi.org/10.1007/s12355-019-00792-z
- Zhao, R., Tang, W., Liu, M., Wang, N., Sun, H., Li, M., & Ma, Y. (2024). Spatial-spectral feature extraction for in-field chlorophyll content estimation using hyperspectral imaging. Biosystems Engineering, 246, 263-276. https://doi.org/10.1016/j.biosystemseng.2024.08.008
- Ziya, A., Mehmet, M., & Yusuf, Y. (2018). Determination of Sugar Beet Leaf Spot Disease Level (Cercospora beticola) with Image Processing Technique by Using Drone. Current Investigations in Agriculture and Current Research, 5(3), 621-631. https://doi.org/10.32474/CIACR.2018.05.000214
Send comment about this article