with the collaboration of Iranian Society of Mechanical Engineers (ISME)

Document Type : Review Article-en

Authors

1 Department of Remote Sensing and GIS, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

2 Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

3 Department of Rice, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

4 Department of Soil Science & Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India

5 Department of Civil Engineering, Alagappa Chettiar Government College of Engineering and Technology, Karaikudi, Tamil Nadu, India

10.22067/jam.2024.89334.1276

Abstract

Drones have emerged as a promising technology in precision agriculture, supporting Sustainable Development Goals (SDGs) by enhancing sustainable farming practices, improving food security, and reducing environmental impact. This review article is intended to meticulously analyze the multiple applications of drone technology in agriculture, such as crop health monitoring, pesticide and fertilizer spraying, weed control, and data-driven decision-making for farm optimization. It emphasizes the role of drones in precision spraying, promoting targeted interventions, and minimizing environmental impact compared to conventional methods. Drones play a vital role in weed management and crop health assessment. The paper focuses on the importance of data collected by drones to acquire the necessary information for decision-making concerning irrigation, fertilization, and overall farm management. However, using Unmanned Aerial Vehicles (UAVs) in agriculture faces challenges caused by batteries and their life, flight time, and connectivity issues, particularly in remote areas. There are legal challenges whereby regulatory frameworks and restrictions are present in different regions that affect the operation of drones. With the help of continuous research and development initiatives, the challenges depicted above could be solved, and the fullest potential of drones can be tapped for achieving Sustainable Agriculture.

Keywords

Main Subjects

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Ajakaiye, O. B. (2023). Drone Agricultural Technology: Implications for Sustainable Food Production in Africa. African Journal of Agricultural Science and Food Research, 9(1), 36-44. Retrieved from https://publications.afropolitanjournals.com/index.php/ajasfr/article/view/397
  2. Ali, M., Al-Ani, A., Eamus, D., & Tan, D. K. (2017). Leaf nitrogen determination using non-destructive techniques–A review. Journal of Plant Nutrition, 40(7), 928-953. https://doi.org/10.1080/01904167.2016.1143954
  3. Alkhamis, W. (2021). Emirati brothers develop drone that can pollinate a date palm tree in less than a minute. The National. Retrieved from: https://www.thenationalnews.com/uae/2021/11/14/emirati-brothers-develop-drone-that-can-pollinate-a-date-palm-tree-in-less-than-a-minute
  4. Altawy, R., & Youssef, A. M. (2016). Security, privacy, and safety aspects of civilian drones: A survey. ACM Transactions on Cyber-Physical Systems1(2), 1-25. https://doi.org/10.1145/3001836
  5. Aslan, M. F., Durdu, A., Sabanci, K., Ropelewska, E., & Gültekin, S. S. (2022). A comprehensive survey of the recent studies with UAV for precision agriculture in open fields and greenhouses. Applied Sciences12(3), 1047. https://doi.org/10.3390/app12031047
  6. Balasubramaniam, P., & Ananthi, V. (2016). Segmentation of nutrient deficiency in incomplete crop images using intuitionistic fuzzy C-means clustering algorithm. Nonlinear Dynamics, 83, 849-866. https://doi.org/10.1007/s11071-015-2372-y
  7. Baradaran Motie, J., Saeidirad, M. H. & Jafarian, M. (2023). Identification of Sunn-pest affected (Eurygaster Integriceps put.) wheat plants and their distribution in wheat fields using aerial imaging. Ecological Informatics, 76, p.102146. https://doi.org/10.1016/j.ecoinf.2023.102146
  8. Barbedo, J. G. A. (2019). A review on the use of unmanned aerial vehicles and imaging sensors for monitoring and assessing plant stresses. Drones, 3(2), 40. https://doi.org/10.3390/drones3020040
  9. Barbedo, J. G. A., & Koenigkan, L. V. (2018). Perspectives on the use of unmanned aerial systems to monitor cattle. Outlook on agriculture, 47(3), 214-222. https://doi.org/10.1177/0030727018781876
  10. Berni, J. A., Zarco-Tejada, P. J., Suárez, L., & Fereres, E. (2009). Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Transactions on geoscience and Remote Sensing, 47(3), 722-738. https://doi.org/10.1109/TGRS.2008.2010457
  11. Bongiovanni, R., & Lowenberg-DeBoer, J. (2004). Precision agriculture and sustainability. Precision Agriculture, 5, 359-387. https://doi.org/10.1023/B:PRAG.0000040806.39604.aa
  12. Broussard, M. A., Coates, M., & Martinsen, P. (2023). Artificial pollination technologies: A review. Agronomy, 13(5), 1351. https://doi.org/10.3390/agronomy13051351
  13. Calderón Madrid, R., Navas Cortés, J. A., Lucena León, C., & Zarco-Tejada, P. J. (2013). High-resolution hyperspectral and thermal imagery acquired from UAV platforms for early detection of Verticillium wilt using fluorescence, temperature and narrow-band indices. Remote Sensing of Environment, 139, 231-245. https://doi.org/10.1016/j.rse.2013.07.031
  14. Capolupo, A., Kooistra, L., Berendonk, C., Boccia, L., & Suomalainen, J. (2015). Estimating plant traits of grasslands from UAV-acquired hyperspectral images: a comparison of statistical approaches. ISPRS International Journal of Geo-Information, 4(4), 2792-2820. https://doi.org/10.3390/ijgi4042792
  15. Chapman, S. C., Merz, T., Chan, A., Jackway, P., Hrabar, S., Dreccer, M. F., Holland, E., Zheng, B., Ling, T. J., & Jimenez-Berni, J. (2014). Pheno-copter: a low-altitude, autonomous remote-sensing robotic helicopter for high-throughput field-based phenotyping. Agronomy, 4(2), 279-301. https://doi.org/10.3390/agronomy4020279
  16. Chen, C. J., Huang, Y. Y., Li, Y. S., Chen, Y. C., Chang, C. Y., & Huang, Y. M. (2021). Identification of fruit tree pests with deep learning on embedded drone to achieve accurate pesticide spraying. IEEE Access, 9, 21986-21997. https://doi.org/10.1109/ACCESS.2021.3056082
  17. Chen, P., Ouyang, F., Wang, G., Qi, H., Xu, W., Yang, W., Zhang, Y., & Lan, Y. (2021). Droplet distributions in cotton harvest aid applications vary with the interactions among the unmanned aerial vehicle spraying parameters. Industrial Crops and Products, 163, 113324. https://doi.org/10.1016/j.indcrop.2021.113324
  18. Christiansen, M. P., Laursen, M. S., Jørgensen, R. N., Skovsen, S., & Gislum, R. (2017). Designing and testing a UAV mapping system for agricultural field surveying. Sensors17(12), 2703. https://doi.org/10.3390/s17122703
  19. Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79-97. https://doi.org/10.1016/j.isprsjprs.2014.02.013
  20. Dampage, U., Navodana, M. D. R., Lakal, U. G. S., & Warusavitharana, A. M. (2020, October). Smart agricultural seeds spreading drone for soft soil paddy fields. In 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON) (pp. 373-377). https://doi.org/10.1109/GUCON48875.2020.9231124
  21. D'Sa, R., Jenson, D., Henderson, T., Kilian, J., Schulz, B., Calvert, M., Heller, T., & Papanikolopoulos, N. (2016). SUAV: Q-An improved design for a transformable solar-powered UAV. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). https://doi.org/10.1109/IROS.2016.7759260
  22. Dash, J. P., Watt, M. S., Pearse, G. D., Heaphy, M., & Dungey, H. S. (2017). Assessing very high resolution UAV imagery for monitoring forest health during a simulated disease outbreak. ISPRS Journal of Photogrammetry and Remote Sensing, 131, 1-14. https://doi.org/10.1016/j.isprsjprs.2017.07.007
  23. Dayana, K., Ramesh, T., Avudaithai, S., Sebastian, P., & Selvaraj, R. (2022). Feasibility of using drone for foliar spraying of nutrients in irrigated green gram (Vigna radiata). Ecology, Environment and Conservation, 28, 64-64.
  24. Delavarpour, N., Koparan, C., Nowatzki, J., Bajwa, S., & Sun, X. (2021). A technical study on UAV characteristics for precision agriculture applications and associated practical challenges. Remote Sensing, 13(6), 1204. https://doi.org/10.3390/rs13061204
  25. Dezordi, L. R., Aquino, L. A. d., Aquino, R. F. B. d. A., Clemente, J. M., & Assunção, N. S. (2016). Diagnostic methods to assess the nutritional status of the carrot crop. Revista Brasileira de Ciência do Solo, 40. https://doi.org/10.1590/18069657rbcs20140813
  26. Dhillon, R., & Moncur, Q. (2023). Small-scale farming: A review of challenges and potential opportunities offered by technological advancements. Sustainability, 15(21), 15478. https://doi.org/10.3390/su152115478
  27. Dileep, M., Navaneeth, A., Ullagaddi, S., & Danti, A. (2020). A study and analysis on various types of agricultural drones and its applications. 2020 fifth international conference on research in computational intelligence and communication networks (ICRCICN), https://doi.org/10.1109/ICRCICN50933.2020.9296195
  28. Dündar, Ö., Bilici, M., & Ünler, T. (2020). Design and performance analyses of a fixed wing battery VTOL UAV. Engineering Science and Technology, an International Journal23(5), 1182-1193. https://doi.org/10.1016/j.jestch.2020.02.002
  29. Dutta, G., & Goswami, P. (2020). Application of drone in agriculture: A review. International Journal of Chemical Studies, 8(5), 181-187. https://doi.org/10.22271/chemi.2020.v8.i5d.10529
  30. Dutta, S., Singh, A. K., Mondal, B. P., Paul, D., & Patra, K. (2023). Digital Inclusion of the Farming Sector Using Drone Technology. https://doi.org/10.5772/intechopen.108740
  31. Elmeseiry, N., Alshaer, N., & Ismail, T. (2021). A detailed survey and future directions of unmanned aerial vehicles (uavs) with potential applications. Aerospace, 8(12), 363. https://doi.org/10.3390/aerospace8120363
  32. Elouarouar, S., & Medromi, H. (2022). Multi-rotors unmanned aerial vehicles power supply and energy management. In E3S web of conferences (Vol. 336, p. 00068). EDP Sciences. https://doi.org/10.1051/e3sconf/202233600068
  33. Emimi, M., Khaleel, M., & Alkrash, A. (2023). The current opportunities and challenges in drone technology. International Journal of Electrical Engineering and Sustainability, 74-89. https://ijees.org/index.php/ijees/article/view/47
  34. Erdogan, P. (2023). The Importance of Agricultural Aviation in Plant Protection. Current Topics in Aeronautics, 127.
  35. Ennouri, K., & Kallel, A. (2019). Remote sensing: an advanced technique for crop condition assessment. Mathematical Problems in Engineering, 2019. https://doi.org/10.1155/2019/9404565
  36. Freeman, P. K., & Freeland, R. S. (2015). Agricultural UAVs in the US: potential, policy, and hype. Remote Sensing Applications: Society and Environment, 2, 35-43. https://doi.org/10.1016/j.rsase.2015.10.002
  37. Ferraz, M. A. J., Santiago, A. G. D. S. G., Bruzi, A. T., & Vilela, N. J. D. (2024). Defoliation Categorization in Soybean with Machine Learning Algorithms and UAV Multispectral Data. https://doi.org/10.3390/agriculture14112088
  38. Frouin, R. J., Franz, B. A., Ibrahim, A., Knobelspiesse, K., Ahmad, Z., Cairns, B., Chowdhary, J., Dierssen, H. M., Tan, J., & Dubovik, O. (2019). Atmospheric correction of satellite ocean-color imagery during the PACE era. Frontiers in Earth Science, 7, 145. https://doi.org/10.3389/feart.2019.00145
  39. Gabriel, J. L., Zarco-Tejada, P. J., López-Herrera, P. J., Pérez-Martín, E., Alonso-Ayuso, M., & Quemada, M. (2017). Airborne and ground level sensors for monitoring nitrogen status in a maize crop. Biosystems Engineering, 160, 124-133. https://doi.org/10.1016/j.biosystemseng.2017.06.003
  40. García-Munguía, A., Guerra-Ávila, P. L., Islas-Ojeda, E., Flores-Sánchez, J. L., Vázquez-Martínez, O., García-Munguía, A. M., & García-Munguía, O. (2024). A Review of Drone Technology and Operation Processes in Agricultural Crop Spraying. Drones, 8(11), 674. https://doi.org/10.3390/drones8110674
  41. Garg, P. K. (2022). Characterisation of Fixed-Wing Versus Multirotors UAVs/Drones. Journal of Geomatics, 16(2), 152-159. https://doi.org/10.58825/jog.2022.16.2.44
  42. Gopal, R., Singh, V., & Aggarwal, A. (2021). Impact of online classes on the satisfaction and performance of students during the pandemic period of COVID 19. Education and Information Technologies, 26(6), 6923-6947. https://doi.org/10.1007/s10639-021-10523-1
  43. Guzman, L. M., Chamberlain, S. A., & Elle, E. (2021). Network robustness and structure depend on the phenological characteristics of plants and pollinators. Ecology and Evolution11(19), 13321-13334. https://doi.org/10.1002/ece3.8055
  44. Hafeez, A., Husain, M. A., Singh, S., Chauhan, A., Khan, M. T., Kumar, N., Chauhan, A., & Soni, S. (2022). Implementation of drone technology for farm monitoring & pesticide spraying: A review. Information processing in Agriculture, 10(2), 192-203. https://doi.org/10.1016/j.inpa.2022.02.002
  45. Hardin, P. J., & Jensen, R. R. (2011). Small-scale unmanned aerial vehicles in environmental remote sensing: Challenges and opportunities. GIScience & Remote Sensing, 48(1), 99-111. https://doi.org/10.2747/1548-1603.48.1.99
  46. Herwitz, S., Johnson, L., Dunagan, S., Higgins, R., Sullivan, D., Zheng, J., Lobitz, B., Leung, J., Gallmeyer, B., & Aoyagi, M. (2004). Imaging from an unmanned aerial vehicle: agricultural surveillance and decision support. Computers and Electronics in Agriculture, 44(1), 49-61. https://doi.org/10.1016/j.compag.2004.02.006
  47. Hosseini, S. A., Masoudi, H., Sajadiye, S. M., & Abdanan Mehdizadeh, S. (2021). Nitrogen Estimation in Sugarcane Fields from Aerial Digital Images using Artificial Neural Network. Environmental Engineering and Management Journal, 20(5), 713-723. https://doi.org/10.30638/eemj.2021.068
  48. Hoffmann, H., Nieto, H., Jensen, R., Guzinski, R., Zarco-Tejada, P., & Friborg, T. (2016). Estimating evaporation with thermal UAV data and two-source energy balance models. Hydrology and Earth System Sciences, 20(2), 697-713. https://doi.org/10.5194/hess-20-697-2016
  49. Huang, Y., Hoffmann, W. C., Lan, Y., Wu, W., & Fritz, B. K. (2009). Development of a spray system for an unmanned aerial vehicle platform. Applied Engineering in Agriculture, 25(6), 803-809. https://doi.org/10.13031/2013.29229
  50. Huang, Y., Reddy, K. N., Fletcher, R. S., & Pennington, D. (2018). UAV low-altitude remote sensing for precision weed management. Weed Technology, 32(1), 2-6. https://doi.org/10.1017/wet.2017.89
  51. Hunt, E. R., Cavigelli, M., Daughtry, C. S., Mcmurtrey, J. E., & Walthall, C. L. (2005). Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precision Agriculture, 6, 359-378. https://doi.org/10.1007/s11119-005-2324-5
  52. Inoue, S., Ito, A., & Yonezawa, C. (2020). Mapping Paddy fields in Japan by using a Sentinel-1 SAR time series supplemented by Sentinel-2 images on Google Earth Engine. Remote Sensing12(10), 1622. https://doi.org/10.3390/rs12101622
  53. Ishihara, M., Inoue, Y., Ono, K., Shimizu, M., & Matsuura, S. (2015). The impact of sunlight conditions on the consistency of vegetation indices in croplands—Effective usage of vegetation indices from continuous ground-based spectral measurements. Remote Sensing, 7(10), 14079-14098. https://doi.org/10.3390/rs71014079
  54. Islam, N., Rashid, M. M., Pasandideh, F., Ray, B., Moore, S., & Kadel, R. (2021). A review of applications and communication technologies for internet of things (IoT) and unmanned aerial vehicle (UAV) based sustainable smart farming. Sustainability, 13(4), 1821. https://doi.org/10.3390/su13041821
  55. Jia, L., Chen, X., Zhang, F., Buerkert, A., & Römheld, V. (2004). Use of digital camera to assess nitrogen status of winter wheat in the northern China plain. Journal of Plant Nutrition, 27(3), 441-450. https://doi.org/10.1081/PLN-120028872
  56. Joshi, P., Sandhu, K. S., Dhillon, G. S., Chen, J., & Bohara, K. (2024). Detection and monitoring of wheat diseases using unmanned aerial vehicles (UAVs). Computers and Electronics in Agriculture, 224, 109158. https://doi.org/10.1016/j.compag.2024.109158
  57. Kallimani, C., Heidarian, R., van Evert, F. K., Rijk, B., & Kooistra, L. (2020). UAV-based Multispectral & Thermal dataset for exploring the diurnal variability, radiometric & geometric accuracy for precision agriculture. Open Data Journal for Agricultural Research, 6, 1-7. https://doi.org/10.18174/odjar.v6i0.16317
  58. Kalaiselvi, P., Chaurasia, J., Krishnaveni, A., Krishnamoorthi, A., Singh, A., Kumar, V., ... & Labanya, R. (2024). Harvesting Efficiency: The Rise of Drone Technology in Modern Agriculture. Journal of Scientific Research and Reports30(6), 191-207. https://doi.org/10.9734/jsrr/2024/v30i62033
  59. Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers and electronics in agriculture, 147, 70-90. https://doi.org/10.1016/j.compag.2018.02.016
  60. Kaniska, K., Jagadeeswaran, R., Kumaraperumal, R., Ragunath, K. P., Kannan, B., Muthumanickam, D., & Pazhanivelan, S. (2022). Impact of Drone Spraying of Nutrients on Growth and Yield of Maize Crop. International Journal of Environment and Climate Change, 12(11), 274-282. https://doi.org/10.9734/ijecc/2022/v12i1130972
  61. Kedari, S., Lohagaonkar, P., Nimbokar, M., Palve, G., & Yevale, P. (2016). Quadcopter-a smarter way of pesticide spraying. Imperial Journal of Interdisciplinary Research, 2(6), 1257-1260.
  62. Khanpara, B. M., Patel, B. P., Parmar, N. B., & Mehta, T. D. (2024). Transforming Agriculture with Drones: Applications, Challenges and Implementation Strategies. Journal of Scientific Research and Reports30(8), 792-802. https://doi.org/10.9734/jsrr/2024/v30i82299
  63. Khaspuria, G., Khandelwal, A., Agarwal, M., Bafna, M., Yadav, R., & Yadav, A. (2024). Adoption of Precision Agriculture Technologies among Farmers: A Comprehensive Review. Journal of Scientific Research and Reports, 30(7), 671-686. https://doi.org/10.9734/jsrr/2024/v30i72180
  64. Kim, S. S., Kim, T. H., & Sim, J. S. (2019). Applicability assessment of UAV mapping for disaster damage investigation in Korea. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences42, 209-214. https://doi.org/10.5194/isprs-archives-XLII-3-W8-209-2019
  65. Koondee, P., Saengprachathanarug, K., Posom, J., Watyotha, C., & Wongphati, M. (2019, August). Study of field capacity and variables of UAV operation time during spraying hormone fertilizer in sugarcane field. In IOP Conference Series: Earth and Environmental Science (Vol. 301, No. 1, p. 012020). IOP Publishing. https://doi.org/10.14456/apst.2023.93
  66. Lee, K., Sudduth, K. A., & Zhou, J. (2024). Evaluating UAV-Based Remote Sensing for Hay Yield Estimation. Sensors, 24(16), 5326. https://doi.org/10.3390/s24165326
  67. Leite‐Filho, A. T., de Sousa Pontes, V. Y., & Costa, M. H. (2019). Effects of deforestation on the onset of the rainy season and the duration of dry spells in southern Amazonia. Journal of Geophysical Research: Atmospheres124(10), 5268-5281. https://doi.org/10.1029/2018JD029537
  68. Li, L., Fan, Y., Huang, X., & Tian, L. (2016). Real-time UAV weed scout for selective weed control by adaptive robust control and machine learning algorithm. 2016 ASABE Annual International Meeting. https://doi.org/10.13031/aim.20162462667
  69. Liebisch, F., Kirchgessner, N., Schneider, D., Walter, A., & Hund, A. (2015). Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach. Plant Methods, 11, 1-20. https://doi.org/10.1186/s13007-015-0048-8
  70. Lou, Z., Xin, F., Han, X., Lan, Y., Duan, T., & Fu, W. (2018). Effect of unmanned aerial vehicle flight height on droplet distribution, drift and control of cotton aphids and spider mites. Agronomy, 8(9), 187. https://doi.org/10.3390/agronomy8090187
  71. Lu, J., Dai, E., Miao, Y., & Kusnierek, K. (2024). Developing a new active canopy sensor-and machine learning-based in-season rice nitrogen status diagnosis and recommendation strategy. Field Crops Research, 317, 109540. https://doi.org/10.1016/j.fcr.2024.109540
  72. M. Tahat, M., M. Alananbeh, K., A. Othman, Y., & I. Leskovar, D. (2020). Soil health and sustainable agriculture. Sustainability, 12(12), 4859. https://doi.org/10.3390/su12124859
  73. Ma, Z., Zhu, X., Zhou, Z., Zou, X., & Zhao, X. (2019). A lateral-directional control method for high aspect ratio full-wing UAV and flight tests. Applied Sciences, 9(20), 4236. https://doi.org/10.3390/app9204236
  74. Malenovský, Z., Lucieer, A., King, D. H., Turnbull, J. D., & Robinson, S. A. (2017). Unmanned aircraft system advances health mapping of fragile polar vegetation. Methods in Ecology and Evolution, 8(12), 1842-1857. https://doi.org/10.1111/2041-210X.12833
  75. Manfreda, S., McCabe, M. F., Miller, P. E., Lucas, R., Pajuelo Madrigal, V., Mallinis, G., Ben Dor, E., Helman, D., Estes, L., & Ciraolo, G. (2018). On the use of unmanned aerial systems for environmental monitoring. Remote Sensing, 10(4), 641. https://doi.org/10.1111/2041-210X.12833
  76. Marinello, F., Pezzuolo, A., Chiumenti, A., & Sartori, L. (2016). Technical analysis of unmanned aerial vehicles (drones) for agricultural applications. Engineering for Rural Development, 15(2), 870-875. http://hdl.handle.net/11390/1099198
  77. Martos, V., Ahmad, A., Cartujo, P., & Ordoñez, J. (2021). Ensuring agricultural sustainability through remote sensing in the era of agriculture 5.0. Applied Sciences, 11(13), 5911. https://doi.org/10.3390/app11135911
  78. Memisoglu, O. (2019). Justification of Civilian Use of Drones and International Security: Comparison between the The United States and the European Union. https://doi.org/10.48676/unibo/amsdottorato/8899
  79. Merwe, D., Burchfield, D., Witt, T., Price, K., & Sharda, A. (2020). Chapter One—Drones in agriculture. Advances in Agronomy, 162, 1-30. https://doi.org/10.1016/bs.agron.2020.03.001
  80. Mogili, U. R., & Deepak, B. (2018). Review on the application of drone systems in precision agriculture. Procedia Computer Science, 133, 502-509. https://doi.org/10.1016/j.procs.2018.07.063
  81. Mohamed, M. B., Shukla, A. K., Keerthika, A., & Mehta, R. S. (2023). Pollination biology in henna evidences from semi-arid region-of Rajasthan. Indian Journal of Ecology50(3), 720-724.
  82. Mohsan, S. A. H., Zahra, Q. u. A., Khan, M. A., Alsharif, M. H., Elhaty, I. A., & Jahid, A. (2022). Role of drone technology helping in alleviating the COVID-19 pandemic. Micromachines, 13(10), 1593. https://doi.org/10.3390/mi13101593
  83. Monteiro, N. O. D. C., de Alencar, E. R., Souza, N. O. S., & Leão, T. P. (2021). Ozonized water in the preconditioning of corn seeds: physiological quality and field performance. Ozone: Science & Engineering43(5), 436-450. https://doi.org/10.1080/01919512.2020.1836472
  84. Mulero-Pázmány, M., Stolper, R., Van Essen, L., Negro, J. J., & Sassen, T. (2014). Remotely piloted aircraft systems as a rhinoceros anti-poaching tool in Africa. PloS one, 9(1), e83873. https://doi.org/10.1371/journal.pone.0083873
  85. Nandhini, D. U., Thiyagarajan, M., & Somasundaram, E. (2022). Soil fertility of rice-blackgram cropping sequence as influenced by different organic sources of nutrients. Bangladesh Journal of Botany51(2), 289-296. https://doi.org/10.3329/bjb.v51i2.60426
  86. Nauš, J., Prokopová, J., Řebíček, J., & Špundová, M. (2010). SPAD chlorophyll meter reading can be pronouncedly affected by chloroplast movement. Photosynthesis Research, 105, 265-271. https://doi.org/10.1007/s11120-010-9587-z
  87. Nhamo, L., Mabhaudhi, T., & Modi, A. (2019). Preparedness or repeated short-term relief aid? Building drought resilience through early warning in southern Africa. Water Sa, 45(1), 75-85. https://doi.org/10.4314/wsa.v45i1.09
  88. Nhamo, L., Magidi, J., Nyamugama, A., Clulow, A. D., Sibanda, M., Chimonyo, V. G., & Mabhaudhi, T. (2020). Prospects of improving agricultural and water productivity through unmanned aerial vehicles. Agriculture, 10(7), 256. https://doi.org/10.3390/agriculture10070256
  89. Ni, J., Yao, L., Zhang, J., Cao, W., Zhu, Y., & Tai, X. (2017). Development of an unmanned aerial vehicle-borne crop-growth monitoring system. Sensors, 17(3), 502. https://doi.org/10.3390/s17030502
  90. Niu, H., Zhao, T., Wang, D., & Chen, Y. (2019). Estimating evapotranspiration with UAVs in agriculture: A review. 2019 ASABE Annual International Meeting.:1901226. https://doi.org/10.13031/aim.201901226
  91. Olson, D., & Anderson, J. (2021). Review on unmanned aerial vehicles, remote sensors, imagery processing, and their applications in agriculture. Agronomy Journal, 113(2), 971-992. https://doi.org/10.1002/agj2.20595
  92. Panjaitan, S. D., Dewi, Y. S. K., Hendri, M. I., Wicaksono, R. A., & Priyatman, H. (2022). A drone technology implementation approach to conventional paddy fields application. IEEE Access, 10, 120650-120658. https://doi.org/10.1109/ACCESS.2022.3221188
  93. Pathak, A. K., Sharma, M., & Nagar, P. K. (2020). A framework for PM2. 5 constituents-based (including PAHs) emission inventory and source toxicity for priority controls: A case study of Delhi, India. Chemosphere255, 126971. https://doi.org/10.1016/j.chemosphere.2020.126971
  94. Paul, P. L. C., Bell, R. W., Barrett-Lennard, E. G., Mainuddin, M., Maniruzzaman, M., & Sarker, K. K. (2022, August). Impact of Different Tillage Systems on the Dynamics of Soil Water and Salinity in the Cultivation of Maize in a Salt-Affected Clayey Soil of the Ganges Delta. In Transforming Coastal Zone for Sustainable Food and Income Security: Proceedings of the International Symposium of ISCAR on Coastal Agriculture, March 16–19, 2021 (pp. 101-116). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-95618-9_8
  95. Peña, J. M., Torres-Sánchez, J., de Castro, A. I., Kelly, M., & López-Granados, F. (2013). Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PloS one, 8(10), e77151. https://doi.org/10.1371/journal.pone.0077151
  96. Pongnumkul, S., Chaovalit, P., & Surasvadi, N. (2015). Applications of smartphone-based sensors in agriculture: a systematic review of research. Journal of Sensors, 1, 1953085. https://doi.org/10.1155/2015/195308
  97. Puri, V., Nayyar, A., & Raja, L. (2017). Agriculture drones: A modern breakthrough in precision agriculture. Journal of Statistics and Management Systems, 20(4), 507-518. https://doi.org/10.1080/09720510.2017.1395171
  98. Qin, W. C., Qiu, B. J., Xue, X. Y., Chen, C., Xu, Z. F., & Zhou, Q. Q. (2016). Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers. Crop Protection, 85, 79-88. https://doi.org/10.1016/j.cropro.2016.03.018
  99. Rajabi, M. S., Beigi, P., & Aghakhani, S. (2023). Drone delivery systems and energy management: a review and future trends. Handbook of Smart Energy Systems, 1-19. https://doi.org/10.1007/978-3-030-72322-4_196-1
  100. Rajagopalan, R. P., & Krishna, R. (2018). Drones: Guidelines, regulations, and policy gaps in India. ICAO Scientific Review: Analytics and Management Research, 1, 53-68.
  101. Rathod, P. D., & Shinde, G. U. (2023). Autonomous Aerial System (UAV) for Sustainable Agriculture: A Review. International Journal of Environment and Climate Change, 13(8), 1343-1355. https://doi.org/10.9734/ijecc/2023/v13i82080
  102. Rejeb, A., Abdollahi, A., Rejeb, K., & Treiblmaier, H. (2022). Drones in agriculture: A review and bibliometric analysis. Computers and Electronics in Agriculture, 198, 107017. https://doi.org/10.1016/j.compag.2022.107017
  103. Ren, Q., Zhang, R., Cai, W., Sun, X., & Cao, L. (2020). Application and development of new drones in agriculture. IOP Conference Series Earth and Environmental Science 440(5):052041. https://doi.org/10.1088/1755-1315/440/5/052041
  104. Ribeiro, L. F. O., Vitória, E. L. d., Soprani Júnior, G. G., Chen, P., & Lan, Y. (2023). Impact of Operational Parameters on Droplet Distribution Using an Unmanned Aerial Vehicle in a Papaya Orchard. Agronomy, 13(4), 1138.1138. https://doi.org/10.3390/agronomy13041138
  105. Roldán, J. J., Joossen, G., Sanz, D., Cerro, J. D., & Barrientos, A. (2015). Mini-UAV based sensory system for measuring environmental variables in greenhouses. Sensors15(2), 3334-3350. https://doi.org/10.3390/s150203334
  106. Runde, D. F., Carter, P., Bandura, R., & Ramanujam, S. R. (2019). Innovations in Guarantees for Development. A Report of the CSIS Project on Prosperity and Development. 6-61
  107. Saeed, A. S., Younes, A. B., Cai, C., & Cai, G. (2018). A survey of hybrid unmanned aerial vehicles. Progress in Aerospace Sciences, 98, 91-105. https://doi.org/10.1016/j.paerosci.2018.03.007
  108. Sarghini, F., & De Vivo, A. (2017). Interference analysis of an heavy lift multirotor drone flow field and transported spraying system. Chemical Engineering Transactions, 58, 631-636. https://doi.org/10.3303/CET1758106
  109. Severtson, D., Callow, N., Flower, K., Neuhaus, A., Olejnik, M., & Nansen, C. (2016). Unmanned aerial vehicle canopy reflectance data detects potassium deficiency and green peach aphid susceptibility in canola. Precision Agriculture, 17, 659-677. https://doi.org/10.1007/s11119-016-9442-0
  110. Shafi, U., Mumtaz, R., García-Nieto, J., Hassan, S., Zaidi, S. A. R., & Iqbal, N. (2019). Precision Agriculture Techniques and Practices: From Considerations to Applications. Sensors, 19, 3796. https://doi.org/10.3390/s19173796
  111. Simelli, I., & Tsagaris, A. (2015). The Use of Unmanned Aerial Systems (UAS) in Agriculture. HAICTA. Kavala, 730-736. http://ceur-ws.org/Vol-1498/HAICTA_2015_paper83.pdf
  112. Singh, P. (2023). Drones in Indian Agriculture: Trends, Challenges, and Policy Implications. https://doi.org/10.13140/RG.2.2.29651.35366/2
  113. Sinha, J. P. (2020). Aerial robot for smart farming and enhancing farmers' net benefit. The Indian Journal of Agricultural Sciences90(2), 258-267. https://doi.org/10.56093/ijas.v90i2.98997
  114. Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of remote sensing in precision agriculture: A review. Remote Sensing, 12(19), 3136. https://doi.org/10.3390/rs12193136
  115. Stöcker, C., Bennett, R., Nex, F., Gerke, M., & Zevenbergen, J. (2017). Review of the current state of UAV regulations. Remote Sensing, 9(5), 459. https://doi.org/10.3390/rs9050459
  116. Subramanian, K., Pazhanivelan, S., Srinivasan, G., Santhi, R., & Sathiah, N. (2021). Drones in insect pest management. Frontiers in Agronomy, 3, 640885. https://doi.org/10.3389/fagro.2021.640885
  117. Swetha, M., Bharath Kumar, K., Sanwal Singh, M., & Urmila, M. (2024).Unmanned aerial vehicles (UAVs): an adoptable technology for precise and smart farming. Discover Internet of Things, 4, 12. https://doi.org/10.1007/s43926-024-00066-5
  118. Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4, 58-73. https://doi.org/10.1016/j.aiia.2020.04.002
  119. Ukhurebor, K. E., Adetunji, C. O., Olugbemi, O. T., Nwankwo, W., Olayinka, A. S., Umezuruike, C., & Hefft, D. I. (2022). Precision agriculture: Weather forecasting for future farming. In AI, Edge and IoT-based Smart Agriculture (pp. 101-121). Elsevier. https://doi.org/10.4018/979-8-3693-1471-5.ch008
  120. Velusamy, P., Rajendran, S., Mahendran, R. K., Naseer, S., Shafiq, M., & Choi, J. G. (2022). Unmanned Aerial Vehicles (UAV) in Precision Agriculture: Applications and Challenges. Energies, 15(1), 217. https://doi.org/10.3390/en15010217
  121. Vairavan, C., Kamble, B. M., Durgude, A. G., Ingle, S. R., & Pugazenthi, K. (2024). Hyperspectral Imaging of Soil and Crop: A Review. Journal of Experimental Agriculture International, 46(1), 48-61. https://doi.org/10.9734/jeai/2024/v46i12290
  122. Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236, 111402. https://doi.org/10.1016/j.rse.2019.111402
  123. Wikifactory. (2020). A virtual round table on how UAVs and robotics can be used to make a difference. In Drones for Change. Retrieved from https://wikifactory.com/@niko11/stories/drones-for-change-a-round-table-on-how-uavs-and-robotics-can-be-used-to-make-a-difference
  124. Xia, T., Kustas, W. P., Anderson, M. C., Alfieri, J. G., Gao, F., McKee, L., Prueger, J. H., Geli, H. M., Neale, C. M., & Sanchez, L. (2016). Mapping evapotranspiration with high-resolution aircraft imagery over vineyards using one-and two-source modeling schemes. Hydrology and Earth System Sciences, 20(4), 1523-1545. https://doi.org/10.5194/hess-20-1523-2016
  125. Yakushev, V., & Kanash, E. (2016). Evaluation of wheat nitrogen status by colorimetric characteristics of crop canopy presented in digital images. Journal of Agricultural Informatics, 7(1), 268. https://doi.org/10.17700/jai.2016.7.1.268
  126. Yang, C., Everitt, J. H., Bradford, J. M., & Murden, D. (2009). Comparison of airborne multispectral and hyperspectral imagery for estimating grain sorghum yield. Transactions of the ASABE (American Society of Agricultural and Biological Engineers, 52, 641-649. https://doi.org/10.13031/2013.26816
  127. Yao, L., Jiang, Y., Zhiyao, Z., Shuaishuai, Y., & Quan, Q. (2016). A pesticide spraying mission assignment performed by multi-quadcopters and its simulation platform establishment. 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC). https://doi.org/10.1109/CGNCC.2016.7829093
  128. Zhang, P., Zhang, W., Sun, H. T., He, F. G., Fu, H. B., Qi, L. Q., Yu, L. J., Jin, L. Y., Zhang, B., & Liu, J. S. (2021). Effects of Spray Parameters on the Effective Spray Width of Single-Rotor Drone in Sugarcane Plant Protection. Sugar Tech, 23, 308-315. https://doi.org/10.1007/s12355-020-00890-3
  129. Zhang, X. Q., Song, X. P., Liang, Y. J., Qin, Z. Q., Zhang, B. Q., Wei, J. J., Li, Y. R., & Wu, J. M. (2020). Effects of spray parameters of drone on the droplet deposition in sugarcane canopy. Sugar Tech, 22, 583-588. https://doi.org/10.1007/s12355-019-00792-z
  130. Zhao, R., Tang, W., Liu, M., Wang, N., Sun, H., Li, M., & Ma, Y. (2024). Spatial-spectral feature extraction for in-field chlorophyll content estimation using hyperspectral imaging. Biosystems Engineering, 246, 263-276. https://doi.org/10.1016/j.biosystemseng.2024.08.008
  131. Ziya, A., Mehmet, M., & Yusuf, Y. (2018). Determination of Sugar Beet Leaf Spot Disease Level (Cercospora beticola) with Image Processing Technique by Using Drone. Current Investigations in Agriculture and Current Research, 5(3), 621-631. https://doi.org/10.32474/CIACR.2018.05.000214
CAPTCHA Image