with the collaboration of Iranian Society of Mechanical Engineers (ISME)

Document Type : Research Article-en

Authors

Department of Biosystems Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran

10.22067/jam.2025.92546.1353

Abstract

Grain harvesting operations account for approximately 25-30% of total direct energy consumption in crop production systems. Developing appropriate blades for harvesting canola (Brassica napus L.) is crucial due to its distinct characteristics compared to other cereal grains. This study investigated the effects of blade angles (placement angles: 30°, 45°, and 60°; sharpness angles: 30°, 45°, and 60°), reciprocating movement speed (800, 1100, and 1400 courses per minute), and moisture levels (19%, 22%, and 24%) on reducing force, shear stress, and energy consumption during canola harvesting. Results showed that a blade sharpness angle of 30° yielded the lowest shear stress (0.175 N mm-2) compared to 60° (0.303 N mm-2). The 45° blade placement angle demonstrated minimum shear stress (0.177 N mm-2) versus 60° (0.320 N mm-2). Increasing moisture content from 19% to 24% reduced shear stress from 0.256 N mm-2 to 0.200 N mm-2. The highest reciprocating speed (1400 courses per minute) resulted in the lowest shear stress (0.167 N mm-2) compared to 800 courses per minute (0.286 N mm-2). Life cycle assessment revealed that varying blade placement angles (30° to 60°) could increase marine aquatic ecotoxicity by up to 55,762.55 kg dichlorobenzene equivalent, while changes in blade sharpness angles and reciprocating speed could lead to increases of 377,429.87 kg and 143,185.69 kg dichlorobenzene equivalent, respectively. The optimal configuration—comprising a sharpness angle of 30°, a placement angle of 45°, a moisture content of 24%, and a reciprocating speed of 1400 courses per minute—significantly reduced both shear energy and environmental impact.

Keywords

Main Subjects

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).

  1. Aghbashlo, M., Kianmehr, M. H., & Hassan-Beygi, S. R. (2008). Specific heat and thermal conductivity of Berberis fruit (Berberis vulgaris). American Journal of Agricultural and Biological Sciences, 3, 330-336. https://doi.org/10.3844/ajabssp.2008.330.336
  2. Amirian, F., Shahbazi, F., & Taheri Garavand, A. (2018). Effects of moisture content and stem region on the bending characteristics of chickpea stem. Agricultural Engineering International, 20(2), 190-196.
  3. Azadbakht, M., Esmaeilzadeh, E., & Esmaeili-Shayan, M. (2015). Energy consumption during impact cutting of canola stalk as a function of moisture content and cutting height. Journal of the Saudi Society of Agricultural Sciences, 14(2), 147-152. https://doi.org/10.1016/j.jssas.2013.10.002
  4. Baruah, D. C., & Panesar, B. S. (2005). Energy requirement model for combine harvester, Part 2: Integration of component models. Biosystems Engineering, 90(2), 161-171. https://doi.org/10.1016/j.biosystemseng.2004.10.003
  5. Chattopadhyay, P. S., & Pandey, K. P. (2001). Impact cutting behavior of sorghum stalks using a flail-cutter-a mathematical model and its verification. Journal of Agricultural Engineering Research, 78(4), 369-376. https://doi.org/10.1006/jaer.2000.0623
  6. Gan, H., Mathanker, S., Abdul Momin, M., Kuhns, B., Stoffel, N. Hansen, A., & Grift, T. (2018). Effects of three cutting blade designs on energy consumption during mowing-conditioning of Miscanthus Giganteus, Biomass and Bioenergy, 109, 166-171. https://doi.org/10.1016/j.biombioe.2017.12.033
  7. Heidari, A., Chegini, G., & Kianmehr, M. H. (2012). Influence of knife bevel angle, rate of loading and stalk section on some engineering parameters of lilium stalk. Iranian Journal of Energy and Environment, 3(4), 333-340. https://doi.org/10.5829/idosi.ijee.2012.03.04.07
  8. Johnson, P. C., Clementson, C. L., Mathanker, S. K., Grift, T. E., & Hansen, A. C. (2012). Cutting energy characteristics of Miscanthus x giganteus stems with varying oblique angle and cutting speed. Biosystems Engineering, 112(1), 42-48. https://doi.org/10.1016/j.biosystemseng.2012.02.003
  9. Kushwaha, R. L., Vashnav, A. S., & Zoerb, G. C. (1983). Shear strength of wheat straw. Canadian Agricultural Engineering, 25(2), 163-166.
  10. Kronbergs, E. (2000). Mechanical strength testing of stalk materials and compacting energy evaluation. Industrial Crops and Products, 11, 211-216. https://doi.org/10.1016/S0926-6690(99)00052-7
  11. Mathanker, S. K., Grift, T. E., & Hansen, A. C. (2015). Effect of blade oblique angle and cutting speed on cutting energy for energycane stems. Biosystems Engineering, 133, 64-70. https://doi.org/10.1016/j.biosystemseng.2015.03.003
  12. Maughan, J. D., Mathanker, S. K., Grift, T. E., Hansen, A. C., & Ting, K. C. (2013). Impact of blade angle on miscanthus harvesting energy requirement. Transactions of the ASABE, 57(4), 999-1006. https://doi.org/10.13031/trans.57.10373
  13. Mirzaee, P., Salami, P., Akhijahani, H. S., & Zareei, S. (2023). Life cycle assessment, energy and exergy analysis in an indirect cabinet solar dryer equipped with phase change materials. Journal of Energy Storage, 61, 106760. https://doi.org/10.1016/j.est.2023.106760
  14. Mohammadi Baneh, N., Navid, H., Alizadeh, M. R., & Ghasem Zadeh, H. R. (2012). Design and development of a cutting head for portable reaper used in rice harvesting operations. Journal of Applied Biological Sciences, 6(3), 69-75.
  15. Nazari Galedar, M., Jafari, A., Mohtasebi, S. S., Tabatabaeefar, A., Sharifi, A., O’Dogherty, M. J., Rafiee, S., & Richard, G. (2008). Effects of moisture content and level in the crop on the engineering properties of alfalfa stems. Biosystems Engineering, 101(2), 199-208. https://doi.org/10.1016/j.biosystemseng.2008.07.006
  16. Okyere, F. G., Kim, H. T., Basak, J. K., Khan, F., Bhujel, A., Park, J., & Lee, D. (2022). Influence of operational properties and material’s physical characteristics on mechanical cutting properties of corn stalks. Journal of Biosystems Engineering, 47, 197-208. https://doi.org/10.1007/s42853-022-00140-2
  17. Persson, S. (1987). Mechanics of cutting plant material. ASAE Publications, Michigan.
  18. Paris, B., Vandorou, F., Balafoutis, A. T., Vaiopoulos, K., Kyriakarakos, G., Manolakos, D., & Papadakis, G. (2022). Energy use in open-field agriculture in the EU: A critical review recommending energy efficiency measures and renewable energy sources adoption. Renewable and Sustainable Energy Reviews, 158, 112098. https://doi.org/10.1016/j.rser.2022.112098
  19. Rezahosseini, A., Jafari Naeimi, K., & Mortezapour, H. (2019). Development and field evaluation of a cabbage harvester unit. Journal of Agricultural Machinery, 9(1), 1-13. https://doi.org/10.22067/jam.v9i1.62703
  20. Roudbari, M., Refahati, N., & Mehdipour, A. (2021). Improvement of mechanical properties of aluminum base composite reinforced by steel Ck75 wire through explosive welding. Revista De Metalurgia, 57(2), e196. https://doi.org/10.3989/revmetalm.196
  21. Soleimani, N., Kamandar, M. R., Khoshnam, F., & Soleimani, A. (2023). Defining and modelling sesame stalk shear behaviour in harvesting by reciprocating cutting blade. Biosystems Engineering, 229, 44-56. https://doi.org/10.1016/j.biosystemseng.2023.03.008
  22. Song, R., & Muliana, A. (2019). Modeling mechanical behaviors of plant stems undergoing microstructural changes. Mechanics of Materials, 139, 103175. https://doi.org/10.1016/j.mechmat.2019.103175
  23. Song, S., Zhou, H., Jia, Z., Xu, L., Zhang, C., Shi, M., & Hu, G. (2022). Effects of cutting parameters on the ultimate shear stress and specific cutting energy of sisal leaves. Biosystems Engineering, 218, 189-199. https://doi.org/10.1016/j.biosystemseng.2022.03.011
  24. Wang, Y., Yang, Y., Zhao, H., Liu, B., Ma, J., He, Y., Zhang, Y., & Xu, H. (2020). Effects of cutting parameters on cutting of citrus fruit stems. Biosystems Engineering, 193, 1-11. https://doi.org/10.1016/j.biosystemseng.2020.02.009
  25. Yeganeh, R., & Trystram, G. (2013). Intensification of pistachio by deep frying. Quality Assurance and Safety of Crops & Foods, 5(2), 131-139. https://doi.org/10.3920/QAS2012.0144
  26. Yin, Y., Qin, W., Zhang, Y., Chen, L., Wen, J., Zhao, C., Meng, Z., & Sun, S. (2021). Compensation control strategy for the cutting frequency of the cutter bar of a combine harvester. Biosystems Engineering, 204, 235-246. https://doi.org/10.1016/j.biosystemseng.2021.01.023
  27. Yuan, L., Lan, M., He, X., Wei, W., Wang, W., & Qu, Z. (2023). Design and experiments of a double-cutter bar combine header used in wheat combine harvesters. Agriculture, 13(4), 817. https://doi.org/10.3390/agriculture13040817
CAPTCHA Image