Document Type : Research Article-en
Authors
1 Department of Biosystems Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
2 Department of Biosystems Engineering, Faculty of Agriculture, Isfahan University of Technology, Isfahan, Iran
Abstract
The rapid growth of the global population and the increasing demand for energy, coupled with the urgent need for environmental conservation, have prompted researchers to explore renewable energy sources as viable alternatives to non-renewable fossil fuels. This study evaluates the performance enhancement of photovoltaic/thermal (PVT) systems using an immersion cooling method with copper oxide nanofluids. The experimental setup included a glass chamber immersing the panel surface, tested at nanofluid volume ratios of 0.025% and 0.05%, and flow rates of 0.01 and 0.02 L s-1. The immersion height was 5 cm within the glass chamber. The tests were conducted under ambient conditions, which included an ambient temperature of 20.6-31.2 ℃ and an irradiance of 343-924 W m-2. Results demonstrate that copper oxide nanofluids at a 0.05% volume ratio and a 0.02 L s-1 flow rate improved thermal efficiency to 31.87% and reduced panel surface temperature by up to 11.8 °C compared to water cooling. Also, the electrical efficiency of the PVT system exceeded that of the reference panel. The overall efficiency of the PVT system reached 41.89%. These findings highlight the potential of nanofluid-based cooling to optimize PVT system efficiency by enhancing thermal management.
Keywords
Main Subjects
©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0).
- Ahmadi, M., Samimi Akhijahani, H., & Salami, P. (2024). Evaluation the performance of drying efficiency and energy efficiency of a solar dryer quipped with phase change materials and air recirculation system. Iranian Food Science and Technology Research Journal, 20(2), 199-216. https://doi.org/10.22067/ifstrj.2023.79695.1218
- Ahmed, A., Baig, H., Sundaram, S., & Mallick, T. K. (2019). Use of nanofluids in solar PVThermal systems. International Journal of Photoenergy, https://doi.org/10.1155/2019/8039129
- Al-Ezzi, A. S., & Ansari, M. N. M. (2022). Photovoltaic solar cells: A review. Applied System Innovation, 5(4), 67. https://doi.org/10.3390/asi5040067
- Al-Ghezi, M. K., Abass, K. I., Salam, A. Q., Jawad, R. S., & Kazem, H. A. (2021, August). The possibilities of using nano-CuO as coolants for PVT system: An experimental study. Journal of Physics: Conference Series, 1973(1), 012123. IOP Publishing.
- Alktranee, M., Shehab, M. A., Németh, Z., Bencs, P., & Hernadi, K. (2023). Experimental study for improving photovoltaic thermal system performance using hybrid titanium oxide-copper oxide nanofluid. Arabian Journal of Chemistry, 16(9), 105102. https://doi.org/10.1016/j.arabjc.2023.105102
- Allaker, R. P., & Yuan, Z. (2019). Chapter 10 - Nanoparticles and the control of oral biofilms. PP 243-275 in K. Subramani and W. Ahmed eds. Micro and Nano Technologies, Nanobiomaterials in Clinical Dentistry (Second Edition), Elsevier. https://doi.org/10.1016/B978-0-12-815886-9.00010-3
- Amalraj, S., & Michael, P. A. (2019). Synthesis and characterization of Al2O3 and CuO nanoparticles into nanofluids for solar panel applications. Results in Physics, 15, 102797. https://doi.org/10.1016/j.rinp.2019.102797
- Arefin, M. A. (2019). Analysis of an integrated photovoltaic thermal system by top surface natural circulation of water. Frontiers in Energy Research, 7, 97. https://doi.org/10.3389/fenrg.2019.00097
- Brahim, T., & Jemni, A. (2017). Economical assessment and applications of photovoltaic/thermal hybrid solar technology: A review. Solar Energy, 153, 540-561. https://doi.org/10.1016/j.solener.2017.05.081
- Dubey, S., Sarvaiya, J. N., & Seshadri, B. (2013). Temperature dependent photovoltaic (PV) efficiency and its effect on PV production in the world–a review. Energy Procedia, 33, 311-321. https://doi.org/10.1016/j.egypro.2013.05.072
- Elias, B. H., AlSadoon, S. H. M., & Abdulgafar, S. A. (2014). Modeling and Simulation of Photovoltaic Module Considering an Ideal Solar Cell. International Journal of Advanced Research in Physical Science, 1(3), 9-18.
- Haidar, Z. A., Orfi, J., & Kaneesamkandi, Z. (2018). Experimental investigation of evaporative cooling for enhancing photovoltaic panels’ efficiency. Results in Physics, 11, 690-697. https://doi.org/10.1016/j.rinp.2018.10.016
- Idoko, L., Anaya-Lara, O., & McDonald, A. (2018). Enhancing PV modules efficiency and power output using multi-concept cooling technique. Energy Reports, 4, 357-369. https://doi.org/10.1016/j.egyr.2018.05.004
- Joshi, S. S., Andhare, A. M., Bhave, N. A., & Gudadhe, N. P. (2019). Thermal management of photovoltaic systems: Case studies. Journal of Physics: Conference Series, 1240(1), 012021. IOP Publishing.
- Khalili, Z., & Sheikholeslami, M. (2024). Simulation of CuO-water nanofluid flow for cooling of solar photovoltaic module. Numerical Heat Transfer, Part A: Applications, 1-12. https://doi.org/10.1080/10407782.2024.2350028
- Madas, S. R., Narayanan, R., & Gudimetla, P. (2023). Numerical investigation on the optimum performance output of photovoltaic thermal (PVT) systems using nano-copper oxide (CuO) coolant. Solar Energy, 255, 222-235. https://doi.org/10.1016/j.solener.2023.02.035
- Mirzaee, P., Salami, P., Samimi Akhijahani, H., & Zareei, S. (2023). Life cycle assessment, energy and exergy analysis in an indirect cabinet solar dryer equipped with phase change materials. Journal of Energy Storage, 61, 106760. https://doi.org/10.1016/j.est.2023.106760
- Mohammadi Sarduei, M., Mortezapour, H., & Jafari Naeimi, K. (2017). Numerical analysis of using hybrid photovoltaic-thermal solar water heater in Iran. Journal of Agricultural Machinery, 7(1), 221-233. https://doi.org/10.22067/jam.v7i1.47426
- Pordanjani, A. H., Aghakhani, S., Afrand, M., Sharifpur, M., Meyer, J. P., Xu, H., …, & Cheraghian, G. (2021). Nanofluids: Physical phenomena, applications in thermal systems and the environmental effects—a critical review. Journal of Cleaner Production, 320, 128573. https://doi.org/10.1016/j.jclepro.2021.128573
- Salami, P., Ajabshirchi, Y., Abdollahpoor, S., & Behfar, H. (2016). A comparison among different parameters for designing a photovoltaic/thermal system using computational fluid dynamics. Engineering, Technology & Applied Science Research, 6(5), 1119-1123. https://doi.org/10.48084/etasr.667
- Sardarabadi, Passandideh-Fard, M., & Zeinali Heris, M. (2014). Experimental investigation of the effects of silica/water nanofluid on PVT (photovoltaic thermal units). Energy, 66, 264-272. https://doi.org/10.1016/j.energy.2014.01.102
- Sathe, T. M., & Dhoble, A. S. (2017). A review on recent advancements in photovoltaic thermal techniques. Renewable and Sustainable Energy Reviews, 76, 645-672. https://doi.org/10.1016/j.rser.2017.03.075
- Sheeba, K. N., Rao, R. M. & Jaisankar, S. (2015). A study on the underwater performance of a solar photovoltaic panel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(14), 1505-1512. https://doi.org/10.1080/15567036.2011.619632
- Siah Chehreh Ghadikolaei, S. (2021). Solar photovoltaic cells performance improvement by cooling technology: An overall review. International Journal of Hydrogen Energy, 46(18), 10939- https://doi.org/10.1016/j.ijhydene.2020.12.164
- Tina, G. M., Rosa-Clot, M., Rosa-Clot, P., & Scandura, P. F. (2012). Optical and thermal behavior of submerged photovoltaic solar panel: SP2. Energy, 39(1), 17-26. https://doi.org/10.1016/j.energy.2011.08.053
- Yazdanifard, F., Ameri, M., & Ebrahimnia-Bajestan, E. (2017). Performance of nanofluid-based photovoltaic/thermal systems: A review. Renewable and Sustainable Energy Reviews, 76, 323-352. https://doi.org/10.1016/j.rser.2017.03.025
Send comment about this article