with the collaboration of Iranian Society of Mechanical Engineers (ISME)

Document Type : Research Article-en

Authors

1 Department of Biosystems Engineering, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran

2 Centre for Artificial Intelligence and Machine Learning, Edith Cowan University, Australia

3 Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

10.22067/jam.2023.83040.1173

Abstract

The present study investigated the use of the cyclic voltammetric electrochemical method and the electronic tongue (e-tongue) method for detecting adulteration in lime juice. Since the measurement of citric acid content in lime juice is an accepted indicator of lime juice adulteration in laboratories, at first, attempts were made to determine its concentration using a potentiostat device and the cyclic voltammetry method, which involved various electrodes including glassy carbon, graphite, gold, and carbon nanotube and gold nanoparticle-modified glassy carbon electrodes. Different conditions were considered by testing citric acid at multiple concentrations in buffers with different pH levels. The results showed that the electrochemical behavior of citric acid was weak, so conventional electrochemical methods could not be used to check its behavior. In the second part, a portable electronic tongue system (e-tongue) was evaluated. Eight samples of adulteration levels (from 5% up to 95%) were created in lemon juice (0, 5, 10, 20, 40, 70, 95, and 100% impurity). Unsupervised models including Principal Component Analysis (PCA) and Hierarchical Clustering Analysis (HCA), and supervised models including Multilayer Perceptron (MLP) neural networks and Support Vector Machine (SVM) were used. Based on the results, the PCA fingerprint showed good discrimination between different levels of adulteration, and HCA further confirmed this. The results of the analysis of supervised methods showed that the MLP model outperformed the SVM model in predicting fraud levels with a success rate of 99.33% and high correlation coefficients (R2 = 0.9973, RMSE = 0.09). These results show that the proposed system can separate different levels of adulteration in lemon juice and can be used as a taste quality control system.

Keywords

Main Subjects

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Abutaleb, A. S. (1991). A neural network for the estimation of forces acting on radar targets. Neural Netw, 4(5), 667-678. https://doi.org/10.1016/0893-6080(91)90020-6
  2. AIJN. (2013). Code of practice for evaluation of fruit and vegetable juices. Reference guideline for lime juice. AIJN 6.26. Brussels, Belgium: Association of the Industry of Juices and Nectars of the European Union. https://doi.org/10.1016/j.jfca.2021.104223
  3. Alizadeh, M., Pirsa, S., & Faraji, N. (2017). Determination of Lemon Juice Adulteration by Analysis of Gas Chromatography Profile of Volatile Organic Compounds Extracted with Nano-Sized Polyester-Polyaniline Fiber. Food Analytical Methods10, 2092-2101. https://doi.org/10.1007/s12161-016-0747-4
  4. Barzegar, F., Nabizadeh, S., Kamankesh, M., Ghasemi, J. B., & Mohammadi, A. (2023). Recent Advances in Natural Product-Based Nanoemulsions as Promising Substitutes for Hazardous Synthetic Food Additives: A New Revolution in Food Processing. Food and Bioprocess Technology, 1-22.‏ https://doi.org/10.1007/s11947-023-03162-6
  5. Bayati, A., Nazari, F., Hassanzadazar, H., & Hosseini, M. J. (2020). Identification parameters for comparison of naturally and commercially lime juice. Carpathian Journal of Food Science & Technology, 12. https://doi.org/10.34302/crpjfst/2020.12.1.11
  6. Benjamin, O., & Gamrasni, D. (2016). Electronic tongue as an objective evaluation method for taste profile of pomegranate juice in comparison with sensory panel and chemical analysis. Food Analytical Methods, 9, 1726-1735.‏ https://doi.org/10.1007/s12161-015-0350-0
  7. Berovic, M., & Legisa, M. (2007). Citric acid production. Biotechnology Annual Review, 13, 303-343.‏ https://doi.org/10.1016/S1387-2656(07)13011-8
  8. Bougrini, M., Tahri, K., Saidi, T., El Alami El Hassani, N., Bouchikhi, B., & El Bari, N. (2016). Classification of honey according to geographical and botanical origins and detection of its adulteration using voltammetric electronic tongue. Food Analytical Methods, 9, 2161-2173. https://doi.org/10.1007/s12161-015-0393-2
  9. Brendel, R., Schwolow, S., Rohn, S., & Weller, P. (2021). Volatilomic Profiling of Citrus Juices by Dual-Detection HS-GC-MS-IMS and Machine Learning-An Alternative Authentication Approach. Journal of Agricultural and Food Chemistry,69, 1727-1738. https://pubs.acs.org/doi/10.1021/acs.jafc.0c07447
  10. Chen, D., Zhang, Y., Lv, B., Liu, Z., Han, J., Li, J., ..., & Wu, Y. (2020). Dietary exposure to neonicotinoid insecticides and health risks in the Chinese general population through two consecutive total diet studies. Environment international135, 105399. https://doi.org/10.1016/j.envint.2019.105399
  11. Chira, A., Bucur, B., & Radu, G. L. (2017). Electrodeposited organic layers formed from aryl diazonium salts for inhibition of copper corrosion. Materials10(3), 235.‏ https://doi.org/10.3390/ma10030235
  12. Das, S., Goswami, B., & Biswass, K. (2016). Milk Adulteration and Detection A Review. Sensor Letters 14, 4-18. https://doi.org/10.1166/sl.2016.3580
  13. Deo, S. K., & Sakhale, B. K. (2025). Phytochemical analysis of Citrus limetta using High-Resolution Liquid Chromatography Mass Spectrometry (HR-LCMS) and FTIR. Sustainability, Agri, Food and Environmental Research13.‏ https://doi.org/10.7770/safer-V13N1-art174
  14. Ghasemi-Varnamkhasti, M., Mohtasebi, S. S., & Siadat, M. (2010). Biomimetic-based odor and taste sensing systems to food quality and safety characterization: An overview on basic principles and recent achievements. Journal of food Engineering, 100(3), 377-387.‏ https://doi.org/10.1016/j.jfoodeng.2010.04.032
  15. Gualdron, O., Brezmes, J., Llobet, E., Amari, A., Vilanova, X., Bouchikhi, B., & Correig, X. (2007). Variable selection for support vector machine based multisensor systems. Sensors & Actuators B, 122, 259-268. https://doi.org/10.1016/j.snb.2006.05.029
  16. Gutierrez-Osuna, R. (2002). Pattern Analysis for Machine Olfaction: A Review. IEEE Sensors Journal, 2(3), 189-202. https://doi.org/1109/JSEN.2002.800688
  17. Guyon, F., Auberger, P., Gaillard, L., Loublanches, C., Viateau, M., Sabathié, N., Salagoïty, M. H., & Médina, B. (2014). 13C/12C isotope ratios of organic acids, glucose and fructose determined by HPLC-co-IRMS for lemon juices authenticity. Food Chemistry, 146, 36-40. https://doi.org/10.1016/j.foodchem.2013.09.020
  18. Haddi, Z., Amari, A., Alami, H., El Bari, N., Llobetc, E., & Bouchikhi, B. (2011). A portable electronic nose system for the identification of cannabis-based drugs. Sensors and Actuators B: Chemical, 155, 465-463. https://doi.org/10.1016/j.snb.2010.12.047
  19. Huang, X., Teye, E., Owusu-Sekyere, J. D., Takrama, J., Sam-Amoah, L. K., Yao, L., & Firempong, C. K. (2014). Simultaneous measurement of titratable acidity and fermentation index in cocoa beans by electronic tongue together with linear and non-linear multivariate technique. Food Analytical Methods, 7, 2137-2144.‏ https://doi.org/10.1007/s12161-014-9862-2
  20. Huynh, D. T., Vo, M. T. N., & Kha, T. C. (2023). Enriching the Bioactive Components and Antioxidant Capacity of Concentrated Lime Juices Prepared by Cryogenic and Vacuum Processes. Processes11(7), 1883.‏ https://doi.org/10.3390/pr11071883
  21. Jahani, R., van Ruth, S., Yazdanpanah, H., Faizi, M., AliAbadi, M. H. S., Mahboubi, A., & Kobarfard, F. (2022). Isotopic signatures and patterns of volatile compounds for discrimination of genuine lemon, genuine lime and adulterated lime juices. Food Control136, 108837.‏ https://doi.org/10.1016/j.foodcont.2022.108837
  22. Jamil, N., Jabeen, R., Khan, M., Riaz, M., Naeem, T., Khan, A., Sabah, N. U., Ghori, S. A., Jabeen, U., & Bazai, Z. A. (2015). Quantitative assessment of juice content, citric acid and sugar content in oranges, sweet lime, lemon and grapes available in fresh fruit market of quetta city. International Journal of Basic & Applied Sciences, 15, 21-24.
  23. Kamthania, M., Saxena, J., Saxena, K., & Sharma, D. K. (2014). Methods of Detection & Remedial Measures. International Journal of Engineering and Technology Research, 1, 15-20.
  24. Karami, H., Rasekh, M., & Mirzaee-Ghaleh, E. (2020). Application of the E-nose machine system to detect adulterations in mixed edible oils using chemometrics methods. Journal of Food Processing and Preservation44, e14696. https://doi.org/10.1111/jfpp.14696
  25. Kelly, S., Brodie, C., & Hilkert, A. (2018). Isotopic-spectroscopic technique: Stable isotope-ratio mass spectrometry (IRMS). In Modern techniques for food authentication(pp. 349-413). Academic Press.‏ https://doi.org/10.1016/B978-0-12-814264-6.00011-6
  26. Khaydukova, M., Cetó, X., Kirsanov, D., del Valle, M., & Legin, A. (2015). A tool for general quality assessment of black tea-Retail price prediction by an electronic tongue. Food Analytical Methods, 8, 1088-1092.‏ https://doi.org/10.1007/s12161-014-9979-3
  27. Khorramifar, A., Sharabiani, V. R., Karami, H., Kisalaei, A., Lozano, J., Rusinek, R., & Gancarz, M. (2022). Investigating Changes in pH and Soluble Solids Content of Potato during the Storage by Electronic Nose and Vis/NIR Spectroscopy. Foods11, 4077. https://doi.org/10.3390/foods11244077
  28. Kiani, S., Minaei, S., & Ghasemi-Varnamkhasti, M. (2017). Integration of computer vision and electronic nose as non-destructive systems for saffron adulteration detection. Computers and Electronics in Agriculture141, 46-53.‏ https://doi.org/10.1016/j.compag.2017.06.018
  29. Kurnia Hartati, F., Bambang Widjanarko, S., Dewanti Widyaningsih, T., & Rifa’i, M. (2017). Antioxidant Activity and Immunomodulator of Indonesia Black Rice (Oryza sativa indica) Extract. Journal of Global Pharma Technology.‏ http://repository.unitomo.ac.id/id/eprint/618
  30. Kvasnička, F., Voldřich, M., Pyš, P., & Vinš, I. (2002). Determination of Isocitric acid in citrus juice—a comparison of HPLC, enzyme set and capillary isotachophoresis methods. Journal of Food Composition and Analysis, 15, 685-91. https://doi.org/10.1006/jfca.2002.1101
  31. Labrador, R. H., Masot, R., Alcañiz, M., Baigts, D., Soto, J., Martínez-Mañez, R., ..., & Barat, J. M. (2010). Prediction of NaCl, nitrate and nitrite contents in minced meat by using a voltammetric electronic tongue and an impedimetric sensor. Food Chemistry, 122(3), 864-870.‏ https://doi.org/10.1016/j.foodchem.2010.02.049
  32. Lin, X., Ni, Y., & Kokot, S. (2013). Glassy carbon electrodes modified with gold nanoparticles for the simultaneous determination of three food antioxidants. Analytica Chimica Acta, 765, 54-62.‏ https://doi.org/10.1016/j.aca.2012.12.036
  33. Lu, L., Deng, S., Zhu, Z., & Tian, S. (2015). Classification of rice by combining electronic tongue and nose. Food Analytical Methods, 8, 1893-1902.‏ https://doi.org/10.1007/s12161-014-0070-x
  34. Lyu, W., Yuan, B., Liu, S., Simon, J. E., & Wu, Q. (2022). Assessment of lemon juice adulteration by targeted screening using LC-UV-MS and untargeted screening using UHPLC-QTOF/MS with machine learning. Food Chemistry373, 131424. https://doi.org/10.1016/j.foodchem.2021.131424
  35. Martınez-Máñez, R., Soto, J., Garcia-Breijo, E., Gil, L., Ibáñez, J., & Llobet, E. (2005). An “electronic tongue” design for the qualitative analysis of natural waters. Sensors and Actuators B: Chemical, 104(2), 302-307.‏ https://doi.org/10.1016/j.snb.2004.05.022
  36. Masikini, M., Ghica, M. E., Baker, P. G., Iwuoha, E. I., & Brett, C. M. (2019). Electrochemical Sensor Based on Multi‐walled Carbon Nanotube/Gold Nanoparticle Modified Glassy Carbon Electrode for Detection of Estradiol in Environmental Samples. Electroanalysis, 31(10), 1925-1933.‏ https://doi.org/10.1002/elan.201900190
  37. Masot, R., Alcañiz, M., Fuentes, A., Schmidt, F. C., Barat, J. M., Gil, L., ..., & Soto, J. (2010). Design of a low-cost non-destructive system for punctual measurements of salt levels in food products using impedance spectroscopy. Sensors and Actuators A: Physical158(2), 217-223.‏ https://doi.org/10.1016/j.sna.2010.01.010
  38. Miaw, C. S. W., Assis, C., Silva, A. R. C. S., Cunha, M. L., Sena, M. M., & de Souza, S. V. C. (2018). Determination of main fruits in adulterated nectars by ATR-FTIR spectroscopy combined with multivariate calibration and variable selection methods. Food Chemistry, 254, 272-280. https://doi.org/10.1016/j.foodchem.2018.02.015
  39. Mohammadian, N., Ziaiifar, A. M., Mirzaee-Ghaleh, E., Kashaninejad, M., & Karami, H. (2023). Nondestructive Technique for Identifying Adulteration and Additives in Lemon Juice Based on Analyzing Volatile Organic Compounds (VOCs). Processes, 11(5), 1531. https://doi.org/10.3390/ pr11051531
  40. Mohammadian, A., Barzegar, M., & Mani‐Varnosfaderani, A. (2021). Detection of fraud in lime juice using pattern recognition techniques and FT‐IR spectroscopy. Food Science & Nutrition9(6), 3026-3038.‏ https://doi.org/10.1002/fsn3.2260
  41. Murphy, J. L., & Mendoza, S. A. (1990). Decreased urinary citrate in premature infants with lung disease. Child Nephrology and Urology, 10(2), 76-80.‏ PMID: 2253255
  42. Niemeyer, F., Galbusera, F., Tao, Y., Kienle, A., Beer, M., & Wilke, H. J. (2021). A deep learning model for the accurate and reliable classification of disc degeneration based on MRI data. Investigative Radiology56(2), 78-85.‏ https://doi.org/10.1097/RLI.0000000000000709
  43. Nunes, C. N., Pauluk, L. E., Dos Anjos, V. E., Lopes, M. C., & Quináia, S. P. (2015). New approach to the determination of contaminants of emerging concern in natural water: study of alprazolam employing adsorptive cathodic stripping voltammetry. Analytical and Bioanalytical Chemistry407, 6171-6179.‏ https://doi.org/10.1007/s00216-015-8792-1
  44. Oliveri, P., Baldo, M. A., Daniele, S., & Forina, M. (2009). Development of a voltammetric electronic tongue for discrimination of edible oils. Analytical and Bioanalytical Chemistry, 395(4), 1135-1143.‏ https://doi.org/10.1007/s00216-009-3070-8
  45. Olsson, J., Winquist, F., & Lundström, I. (2006). A self-polishing electronic tongue. Sensors and Actuators B, 118, 461-465. https://doi.org/10.1016/j.snb.2006.04.042
  46. Penniston, K. L., Nakada, S. Y., Holmes, R. P., & Assimos, D. G. (2008). Quantitative assessment of citric acid in lemon juice, lime juice, and commercially-available fruit juice products. Journal of Endourology, 22(3), 567-570.‏ https://doi.org/10.1089/end.2007.0304
  47. Penniston, K. L., Steele, T. H., & Nakada, S. Y. (2007). Lemonade therapy increases urinary citrate and urine volumes in patients with recurrent calcium oxalate stone formation. Urology, 70(5), 856-860.‏ https://doi.org/10.1016/j.urology.2007.06.1115
  48. Rasekh, M., & Karami, H. (2021). E-nose coupled with an artificial neural network to detection of fraud in pure and industrial fruit juices. International Journal of Food Properties24, 592-602. https://doi.org/10.1080/10942912.2021.1908354
  49. Rodríguez-García, C., Sánchez-Quesada, C., & Gaforio, J. J. (2019). Dietary flavonoids as cancer chemopreventive agents: An updated review of human studies. Antioxidants8, 137. https://doi.org/10.3390/antiox8050137
  50. Saffariha, M., Azarnivand, H., Chahouki, M. A. Z., Tavili, A., Ebrahimi, S. N., Potter, D. & Jahani, R. (2020). Changes in Essential Oil Content and Composition of Salvia Limbata CA Mey at Different Growth Stages and Altitudes. e5127.
  51. https://doi.org/10.1002/bmc.5127
  52. Saffariha, M., Jahani, A., Jahani, R., & Latif, S. (2021). Prediction of hypericin content in Hypericum perforatum in different ecological habitat using artificial neural networks. Plant Methods, 17, 1-17. https://doi.org/10.1186/s13007-021-00710-z
  53. Scherer, R., Rybka, A. C. P., Ballus, C. A., Meinhart, A. D., Teixeira Filho, J., & Godoy, H. T. (2012). Validation of a HPLC method for simultaneous determination of main organic acids in fruits and juices. Food Chemistry, 135, 150-154. https://doi.org/10.1016/j.foodchem.2012.03.111
  54. Schölkopf, B., Smola, A. J., & Bach, F. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press.‏ B Scholkopf, AJ Smola- 2018‏ google.com‏
  55. Scott, S. M., James, D., & Ali, Z. (2006). Data analysis for electronic nose systems. Microchimica Acta, 156(3), 183-207.‏ https://doi.org/10.1007/s00604-006-0623-9
  56. Shafiee, S., & Minaei, S. (2018). Combined data mining/NIR spectroscopy for purity assessment of lime juice. Infrared Physics & Technology91, 193-199.‏ https://doi.org/10.1016/j.infrared.2018.04.012
  57. Shojaee, M., AliAbadi, M. H., & Salamzadeh, J. (2020). Novel Application of Near-infrared Spectroscopy and Chemometrics Approach for Detection of Lime Juice Adulteration. Iranian Journal of Pharmaceutical Research, 19, 34-44. https://doi.org/22037/ijpr.2019.112328.13686
  58. Teye, E., Huang, X., Han, F., & Botchway, F. (2014). Discrimination of cocoa beans according to geographical origin by electronic tongue and multivariate algorithms. Food Analytical Methods, 7, 360-365.‏ https://doi.org/10.1007/s12161-013-9634-4
  59. Uckoo, R. M., Jayaprakasha, G. K., Nelson, S. D., & Patil, B. S. (2011). Rapid simultaneous determination of amines and organic acids in citrus using high-performance liquid chromatography. Talanta, 83, 948-954. https://doi.org/10.1016/j.talanta.2010.10.063
  60. Wang, Z., & Jablonski, J. E. (2016). Targeted and non-targeted detection of lemon juice adulteration by LC-MS and chemometrics. Food Additives and Contaminants: Part A, Chemistry, Analysis, Control, Exposure and Risk Assessment, 33, 560-573. https://doi.org/10.1080/19440049.2016.1138547
  61. White, M. P., Aladangady, N., Rolton, H. A., McColl, J. H., & Beattie, J. (2005). Urinary citrate in preterm and term babies. Early human development, 81(2), 191-195.‏ https://doi.org/10.1016/j.earlhumdev.2004.07.008
  62. Winquist, F., Wide, P., & Lundström, I. (1997). An electronic tongue based on voltammetry. Analytica Chimica Acta, 357(1-2), 21-31. ‏https://doi.org/10.1016/S0003-2670(97)00498-4
  63. Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1-3), 37-52.‏ https://doi.org/10.1016/0169-7439(87)80084-9
  64. Wu, H., Yue, T., & Yuan, Y. (2018). Authenticity tracing of apples according to variety and geographical origin based on electronic nose and electronic tongue. Food Analytical Methods, 11, 522-532.‏ https://doi.org/10.1007/s12161-017-1023-y
  65. Xin, Y., Wang, N., Wang, C., Gao, W., Chen, M., Liu, N., ..., & Hou, B. (2020). Electrochemical detection of hydroquinone and catechol with covalent organic framework modified carbon paste electrode. Journal of Electroanalytical Chemistry877, 114530.‏ https://doi.org/10.1016/j.jelechem.2020.114530
  66. Yilmaz, E., Batislam, E., Basar, M., Tuglu, D., & Erguder, I. (2008). Citrate levels in fresh tomato juice: a possible dietary alternative to traditional citrate supplementation in stone-forming patients. Urology, 71(3), 379-383.‏ https://doi.org/10.1016/j.urology.2007.08.065
  67. Yin, R. Y., Li, X., & Shen, Q. (2020). Establishment of Edible Quality Evaluating Model of Millet[J]. Journal of Chinese Institute of Food Science and Technology, 20(06), 270-277.
  68. Zorpeykar, S., Mirzaee-Ghaleh, E., Karami, H., Ramedani, Z., & Wilson, A. D. (2022). Electronic Nose Analysis and Statistical Methods for Investigating Volatile Organic Compounds and Yield of Mint Essential Oils Obtained by Hydrodistillation. Chemosensors10, 486. https://doi.org/10.3390/chemosensors10110486
CAPTCHA Image