با همکاری انجمن مهندسان مکانیک ایران

نوع مقاله : مقاله پژوهشی انگلیسی

نویسندگان

1 گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه رازی، کرمانشاه، ایران

2 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

3 گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، دانشگاه تهران، کرج، ایران

چکیده

ارتعاشات ایجادشده در اثر استفاده از مخلوط‌های سوخت مختلف در موتور تراکتور می‌تواند منجر به سایش سریع قطعات موتور، افزایش قابل‌توجه هزینه‌های نگهداری و کاهش راحتی و ایمنی برای اپراتورها شود. امروزه سوخت‌های تجدیدپذیر، یعنی بیودیزل و بیواتانول، مورد توجه بسیاری از محققان قرار گرفته‌اند. در مطالعه حاضر، ارتعاشات موتور تراکتور MF285 در سه جهت، در دورهای 1000، 1600 و 2000 دور در دقیقه برای ده سطح سوخت مختلف حاصل از ترکیبات مختلف سوخت‌های بیودیزل، بیواتانول و دیزل اندازه‌گیری شد. برای تجزیه و تحلیل اثرات پارامترهای مربوطه بر ارتعاشات موتور، از روش سطح پاسخ (RSM) و سیستم استنتاج فازی شبکه عصبی مصنوعی (ANFIS) استفاده شد. نتایج به‌دست‌آمده نشان داد که افزایش دور موتور با افزایش ارتعاشات نسبت مستقیم دارد. علاوه بر این، سوخت دیزل خالص بخش عمده ارتعاشات را به خود اختصاص داده و B5E4D91 بیشترین ارتعاشات را در بین ترکیبات سوخت داشت. علاوه بر این، با افزایش بیودیزل در ترکیبات سوخت، ارتعاشات به‌طور معنی‌داری کاهش یافت. تحلیل بهینه‌سازی نشان داد که مؤثرترین سوخت‌ها، که کمترین سطح ارتعاش را نشان می‌دهند، از طریق RSM به نام B25E6D69 و از طریق ANFIS به نام B25E4D71 شناسایی شدند.

کلیدواژه‌ها

موضوعات

©2025 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0)

  1. Ağbulut, Ü., Karagöz, M., Sarıdemir, S., & Öztürk, A. (2020). Impact of various metal-oxide based nanoparticles and biodiesel blends on the combustion, performance, emission, vibration and noise characteristics of a CI engine. Fuel, 270(February). https://doi.org/10.1016/j.fuel.2020.117521
  2. Anand, K., Sharma, R. P., & Mehta, P. S. (2011). Experimental investigations on combustion, performance and emissions characteristics of neat karanji biodiesel and its methanol blend in a diesel engine. Biomass and Bioenergy, 35(1), 533-541. https://doi.org/10.1016/j.biombioe.2010.10.005
  3. Arkhipov, M., Krueger, E., & Kurtener, D. (2008). Evaluation of Ecological Conditions Using Bioindicators: Application of Fuzzy Modeling BT - Computational Science and Its Applications – ICCSA 2008. In O. Gervasi, B. Murgante, A. Laganà, D. Taniar, Y. Mun, & M. L. Gavrilova (Eds.) (pp. 491–500). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-69839-5_36
  4. Buragohain, M., & Mahanta, C. (2008). A novel approach for ANFIS modelling based on full factorial design. Applied Soft Computing, 8(1), 609-625. https://doi.org/10.1016/j.asoc.2007.03.010
  5. Cahyono, B., Semin, S., & Putri, I. C. (2024). Experimental Investigation of Citronella Oil as Bioadditive in Biodiesel Fuel on Diesel Engine Performance, Vibration and Emissions. International Journal of Marine Engineering Innovation and Research, 9(2). https://doi.org/10.12962/j25481479.v9i2.20778
  6. Çelebi, K., Uludamar, E., Tosun, E., Yıldızhan, Ş., Aydın, K., & Özcanlı, M. (2017). Experimental and artificial neural network approach of noise and vibration characteristic of an unmodified diesel engine fuelled with conventional diesel, and biodiesel blends with natural gas addition. Fuel, 197, 159-173. https://doi.org/10.1016/j.fuel.2017.01.113
  7. Chaitidis, G. D., Marhavilas, P. K., & Kanakaris, V. (2022). Potential Effects on Human Safety and Health from Infrasound and Audible Frequencies Generated by Vibrations of Diesel Engines Using Biofuel Blends at the Workplaces of Sustainable Engineering Systems. Sustainability (Switzerland), 14(13). https://doi.org/10.3390/su14137554
  8. Cheng, C.-B., Cheng, C.-J., & Lee, E. S. (2002). Neuro-fuzzy and genetic algorithm in multiple response optimization. Computers & Mathematics with Applications, 44(12), 1503-1514. https://doi.org/10.1016/S0898-1221(02)00274-2
  9. Debnath, B. K., Sahoo, N., & Saha, U. K. (2013). Adjusting the operating characteristics to improve the performance of an emulsified palm oil methyl ester run diesel engine. Energy Conversion and Management, 69, 191-198. https://doi.org/10.1016/j.enconman.2013.01.031
  10. Emiroğlu, A. O., & Şen, M. (2018). Combustion, performance and emission characteristics of various alcohol blends in a single cylinder diesel engine. Fuel, 212, 34-40. https://doi.org/10.1016/j.fuel.2017.10.016
  11. Erdiwansyah, M., Sani, M. S. M., Mamat, R., Gani, A., & Munawir, S. (2022). Effect of Vibration and Noise on Spark Ignition Engines of Methanol Fuel Blended with Gasoline. Journal of Scientific and Industrial Research, 81(1), 32–38. https://doi.org/10.56042/jsir.v81i01.39333
  12. Ferella, F., Mazziotti Di Celso, G., De Michelis, I., Stanisci, V., & Vegliò, F. (2010). Optimization of the transesterification reaction in biodiesel production. Fuel, 89(1), 36-42. https://doi.org/10.1016/j.fuel.2009.01.025
  13. Ghaderi, M., Naderloo, L., Javadikia, H., Mostafaei, M., & Rabbani, H. (2019). Different blends of biodiesel, bioethanol, diesel and noise pollution emitted by stationary and moving MF285 tractor. Journal of Environmental Health Science and Engineering, 17(2), 743-752. https://doi.org/10.1007/s40201-019-00390-x
  14. Guzzomi, A. L., Hesterman, D. C., & Stone, B. J. (2007). The effect of piston friction on the torsional natural frequency of a reciprocating engine. Mechanical Systems and Signal Processing, 21(7), 2833-2837. https://doi.org/10.1016/j.ymssp.2007.02.002
  15. Hansen, A. C., Zhang, Q., & Lyne, P. W. L. (2005). Ethanol-diesel fuel blends - A review. Bioresource Technology, 96(3), 277-285. https://doi.org/10.1016/j.biortech.2004.04.007
  16. Heidary, B., Hassan-Beygi, R., Ghobadian, B., & Alisaraei, A. T. (2013). Vibration analysis of a small diesel engine using diesel-biodiesel fuel blends. Agricultural Engineering International : The CIGR e-Journal, 15(3), 117-126. Retrieved from https://www.researchgate.net/publication/288070656_Vibration_analysis_of_a_small_diesel_engine_using_diesel-biodiesel_fuel_blends
  17. Javadikia, H., Naderloo, L., Safrangian, A., Mostafaei, M., & Mohtasebi, S. S. (2016). Analyzing the MF285 tractor engine vibrations caused by different combinations of biodiesel, bioethanol and diesel as fuel by Response Surface Method. Iranian Journal of Biosystems Engineering, 47(2), 329-335. https://doi.org/10.22059/ijbse.2016.58782
  18. Javed, S., Murthy, Y. V. V. S., Baig, R. U., & Rao, T. N. (2016). Vibration analysis of a diesel engine using biodiesel fuel blended with nano particles by dual fueling of hydrogen. Journal of Natural Gas Science and Engineering, 33, 217-230. https://doi.org/10.1016/j.jngse.2016.05.026
  19. Keskin, A. (2010). The influence of ethanol-gasoline blends on spark ignition engine vibration characteristics and noise emissions. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 32(20), 1851-1860. https://doi.org/10.1080/15567030902804749
  20. Lima Júnior, J., Magalhaes, R. R., Ferreira, D. D., & Pereira, P. H. C. (2020). Vibration Level Evaluation of Engines Fueled With Brazilian Commercial Diesel and Biodiesel. Theoretical and Applied Engineering, 4(3), 1-11. https://doi.org/10.31422/taae.v4i1.29
  21. Metin Ertunc, H., & Hosoz, M. (2008). Comparative analysis of an evaporative condenser using artificial neural network and adaptive neuro-fuzzy inference system. International Journal of Refrigeration, 31(8), 1426-1436. https://doi.org/10.1016/j.ijrefrig.2008.03.007
  22. Mirnezami, S. V., Hassan-Beygi, S. R., Banakar, A., & Ghobadian, B. (2017). Modelling total weighted vibration of a trailer seat pulled by a two-wheel tractor consumed diesel–biodiesel fuel blends using ANFIS methodology. Neural Computing and Applications, 28(December), 1197-1206. https://doi.org/10.1007/s00521-016-2440-3
  23. Naderloo, L., Alimardani, R., Omid, M., Sarmadian, F., Javadikia, P., Torabi, M. Y., & Alimardani, F. (2012). Application of ANFIS to predict crop yield based on different energy inputs. Measurement: Journal of the International Measurement Confederation, 45(6), 1406-1413. https://doi.org/10.1016/j.measurement.2012.03.025
  24. Patel, C., Agarwal, A. K., Tiwari, N., Lee, S., Lee, C. S., & Park, S. (2016). Combustion, noise, vibrations and spray characterization for Karanja biodiesel fuelled engine. Applied Thermal Engineering, 106, 506-517. https://doi.org/10.1016/j.applthermaleng.2016.06.025
  25. Radhakrishnan, S., Munuswamy, D. B., Devarajan, Y., & Mahalingam, A. (2019). Performance, emission and combustion study on neat biodiesel and water blends fuelled research diesel engine. Heat and Mass Transfer, 55(4), 1229-1237. https://doi.org/10.1007/s00231-018-2509-x
  26. Rahimi, H., Ghobadian, B., Yusaf, T., Najafi, G., & Khatamifar, M. (2009). Diesterol: An environment-friendly IC engine fuel. Renewable Energy, 34(1), 335-342. https://doi.org/10.1016/j.renene.2008.04.031
  27. Safrangian, A., Naderloo, L., Javadikia, H., Mostafaei, M., & Mohtasebi, S. S. (2017). Investigating the engine vibration in MF285 tractor effected by different blends of biodiesel fuel using statistical methods and ANFIS. Journal of Agricultural Machinery, 7(1), 165-176. https://doi.org/10.22067/jam.v7i1.52397
  28. Salokhe, V. M., Majumder, B., & Islam, M. S. (1995). Vibration characteristics of a power tiller. Journal of Terramechanics, 32(4), 181-197. https://doi.org/10.1016/0022-4898(95)00015-1
  29. Saridemir, S., & Polat, F. (2023). Experimental Analysis of The Impacts of Biodiesel-Diesel Fuel Mixtures on Engine Vibration, Noise and Combustion. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 11(5), 2352-2364. https://doi.org/10.29130/dubited.1377079
  30. Selim, M. Y. E. (2001). Pressure-time characteristics in diesel engine fueled with natural gas. Renewable Energy, 22(4), 473-489. https://doi.org/10.1016/S0960-1481(00)00115-4
  31. Subbaiah, G. V. V., Gopal, K. R. R., Hussain, S. A. A., Prasad, B. D. D., Reddy, K. T. T., & Pradesh, A. (2010). Rice Bran Oil Biodiesel As an Additive in Diesel- Ethanol Blends for Diesel Engines. International Journal of Recent Research and Applied Studies, 3(June), 334-342.
  32. Susilo, S. H., Listiyono, L., & Khambali, K. (2022). Analysis of the Effect of Dieselessential Oil Fuel Mixture on the Performance, Noise, Vibration of Diesel Engines. Eastern-European Journal of Enterprise Technologies, 4(6–118), 16-21. https://doi.org/10.15587/1729-4061.2022.261430
  33. Taghizadeh-Alisaraei, A., Ghobadian, B., Tavakoli-Hashjin, T., & Mohtasebi, S. S. (2012). Vibration analysis of a diesel engine using biodiesel and petrodiesel fuel blends. Fuel, 102, 414-422. https://doi.org/10.1016/j.fuel.2012.06.109
  34. Taghizadeh-Alisaraei, A., Ghobadian, B., Tavakoli-Hashjin, T., Mohtasebi, S. S., Rezaei-asl, A., & Azadbakht, M. (2016). Characterization of engine’s combustion-vibration using diesel and biodiesel fuel blends by time-frequency methods: A case study. Renewable Energy, 95, 422-432. https://doi.org/10.1016/j.renene.2016.04.054
  35. Taghizadeh-Alisaraei, A., & Rezaei-Asl, A. (2016). The effect of added ethanol to diesel fuel on performance, vibration, combustion and knocking of a CI engine. Fuel, 185, 718-733. https://doi.org/10.1016/j.fuel.2016.08.041
  36. Tüccar, G. (2021). Experimental study on vibration and noise characteristics of a diesel engine fueled with mustard oil biodiesel and hydrogen gas mixtures. Biofuels, 12(5), 537-542. https://doi.org/10.1080/17597269.2018.1506631
  37. Velmurugan, V., Aathif Akmal, S. M., Paramasivam, V., & Thanikaikarasan, S. (2020). Prediction of vibration and exhaust gas emission characteristics using palm oil with nano particle diesel fuel. Materials Today: Proceedings, 21(xxxx), 800-805. https://doi.org/10.1016/j.matpr.2019.07.248
  38. Xu, H., Yin, B., Liu, S., & Jia, H. (2017). Performance optimization of diesel engine fueled with diesel–jatropha curcas biodiesel blend using response surface methodology. Journal of Mechanical Science and Technology, 31(8), 4051-4059. https://doi.org/10.1007/s12206-017-0753-5
  39. Zöldy, M. (2011). Ethanol-biodiesel-diesel blends as a diesel extender option on compression ignition engines. Transport, 26(3), 303-309. https://doi.org/10.3846/16484142.2011.623824
CAPTCHA Image